Distributed SIP DDoS Defense with P4

Aldo Febro
School of Computer Science
University of Hertfordshire
Hatfield, UK AL10 9AB
Email: a.febro@herts.ac.uk

Abstract—SIP DDoS attack is growing and has a real threat
to crippling public communication infrastructure. The standard
approach to building the defense is at or near the attack
destination (i.e. victim’s location). This approach is struggling
to keep up with the growing volume and attack sophistication.
To be better prepared for future attacks, the workload needs to
be distributed, and the attack needs to be mitigated as close to the
attack source as possible. This paper experiments with data plane
programming (P4) and control plane programming of Ethernet
switches to provide first-hop detection and mitigation capability
for SIP INVITE DDoS attack at every switchport. This approach
creates a distributed or source-based defense component which
could be added to the existing destination-based components to
create a more comprehensive overall solution that is extensible,
economical, and scalable against SIP DDoS attack of the future.

Keywords—SIP, DoS, DDoS, SDN, P4, data plane, control plane

I. INTRODUCTION

Application layer DDoS attack against SIP has the potential
to become a major public security issue when it is targeted
towards critical public infrastructure like Next Generation
911 (NG9-1-1) system [1]. A recent empirical study shows
that 200 REGISTER messages/second and 110 INVITE mes-
sages/second was enough to cause Denial-of-Service [2].

Current approach towards SIP DDoS defense deployment
leans towards the destination-based approach [3] where de-
fense resources are deployed at the destination of the attack
i.e. at the victim’s location. With this approach, the potential
victims need to keep building bigger and more sophisticated
defense system to keep up with the growing DDoS attack.
Considering that such a system is not trivial to operate and
upkeep, a new design needs to be explored to enhance existing
approach.

In contrast with the destination-based approach, the source-
based approach is deployed near the source of the attack [3].
With this method, SIP DoS packets are detected and mitigated
at the point-of-entry to the network. As these attacks were dealt
when the volume was still negligible, it did not require much
CPU and memory resource on the network equipment (router
or switch) to process these packets. This approach requires SIP
DDoS defense capability to be present at the network edge to
form a distributed approach towards SIP DDoS defense.

This paper describes a novel approach that uses P4 [4] data
plane programming and control plane programming to create
distributed approach for SIP DDoS defense. A P4-compatible

Hannan Xiao
School of Computer Science
University of Hertfordshire
Hatfield, UK AL10 9AB
Email: h.xiao@herts.ac.uk

Joseph Spring
School of Computer Science
University of Hertfordshire
Hatfield, UK AL10 9AB
Email: j.spring@herts.ac.uk

switch provides a rich filtering expression that allows each
switchport to perform deep packet inspection for SIP DoS
detection. For example, the switch can be programmed to count
the number of incoming SIP REGISTER or INVITE packet
sent by the directly connected device. When the threshold is
exceeded, P4-controller instructs P4-switch to drop the packet
and therefore mitigate the attack right at the source.

A. Related Work

A comprehensive survey paper on VolIP security research
indicates that half of DoS-related vulnerabilities are on the
endpoints [10]. Hussain et al. (2015) in their comprehensive
study of flooding attack wrote that SIP INVITE message is
considered as one of the major root causes [7], and application-
level DDoS flooding attacks like SIP remain to be an open
problems [12]. Some of the related works that use destination-
based as well as source-based approach are as follows:

Ormazabal et al. (2008) [5] introduced carrier class, CAM-
accelerated solution for SIP DoS defense called ”Secure SIP.”
It proposes the use of 2 filters (SIP-filter and dynamic pin-
hole RTP-filter). It handles spoofed packets by using Return
Routability filter. SIP method-based filters and state validation
filters are used to provide protection against SIP protocol
vulnerability against DoS attack.

Huici, Niccolini, and DHeureuse (2009) introduced ”SIP
Defender” where they proposed source-based attack mitigation
coupled with destination-based attack detection [6]. There
are two Special filtering box called SIP Controller (SC).
SC1 is installed at source-network, while SC2 is installed at
destination-network. At the destination network, IDS is also
assumed to be in place. When the IDS detects an attack, it
will send a list of SIP users to SC2. SC2 then send a filter
request to SC1 which will install and mitigate the attack.

Liu, Yin, and Lee (2014) [8] proposed source-based attack
mitigation approach for traffic coming from untrusted peer
network using Cloud SIP FireWall (Cloud SFW) and SDN
controller. The proposal uses queuing theory to construct
appropriate low-priority and high-priority queue at Cloud SFW.
Cloud SFW can monitor bandwidth usage and notify SDN
controller when it hits a certain level. During an attack, SDN
controller will coordinate mitigation effort with either local
Cloud SFW or remote Cloud SFW installed at the untrusted
peer network.

Source- Source- Destination- Destination-
based based based based
detection | mitigation detection mitigation
Secure SIP[5] N N Y Y
SIP Defender [6] N Y Y N
Cloud SEW[8] N Y Y Y
This paper Y Y N N

TABLE I: Destination-based vs. source-based defense

B. Research Gap

Lack of first-hop detection and mitigation. There are sev-
eral advantages to detect and mitigate at the first network hop.
First, the amount of traffic is still small and therefore can
be mitigated by the first router or switch. Second, bandwidth
is saved by not transporting attack traffic all the way to the
destination only to be dropped or to be used for malicious
purposes. Third, limit collateral damage along the way towards
the victim.

Limited number of sensors. Sensor detects and recognizes
SIP DoS attack pattern within SIP transaction or dialog. To
recognize application layer attack like SIP, the sensor need
to know how the protocol works and how a session deviates
from normal pattern. Most proposals have too few sensors
which restricts the visibility of ongoing attack and therefore
not having early warning. The cost and complexity of sensor
deployment are usually the factors that make it not practical
to have more sensors.

Limited number of mitigation points. There are only se-
lected nodes in the network that can perform packet filtering.
The attack could have grown to a point where it requires more
resources than what is currently available to deal with the
attack.

Researchers did not generally consider source-based DDoS
defense approach due to the cost involved and complex deploy-
ment issues. Networking vendor produces Ethernet switches in
mass quantities with just enough hardware resources to support
selected features. As a result, the features of these switches are
fixed and not extensible by end-users. For specific functions,
end-users would have to get special-purpose network appli-
ance e.g. load balancers, firewall, VPN, etc. Procuring these
appliances for mass deployment is not practical and financially
justifiable.

However, several major trends that change the market: the
demand for faster innovation, the rise of Software Defined
Networking (SDN), and the trend of open source software
and hardware movement. Competitive global business market
demands for faster innovation and production cycle. Organi-
zations view traditional networks as not suitable for the needs
of today. SDN promises to enable innovation through network
programmability [9] while Open source networking hardware
provides the platform to run these software and to provide
physical connectivity. These trends would potentially make it
affordable for end-users to replace their existing fixed-function
conventional switch with a programmable switch that matches
or exceeds the performance of the conventional switch.

C. Research Contribution

To the best of our knowledge, this study made the following
novel contributions: SIP DDoS detection through the use of
data plane programming of Ethernet switch, First-hop SIP
DDoS attack detection and mitigation capability for every port
on the Ethernet switch, and Distributed SIP DDoS defense
approach using Ethernet switches at the network edge.

II. PROPOSED MODEL AND METHODS

The proposed model was built to simulate typical network
where SIP clients are connected to access-layer switches as
depicted in Figure. 1. Each of these P4-switches are controlled
by a P4-controller over TCP socket connection. Each port
on these switches was programmed to perform deep packet
inspection for INVITE or REGISTER packets. There was a
counter associated with each port to count the number of
INVITE or REGISTER packets received. Every second, P4-
controller evaluated this counter to determine whether SIP
INVITE flood attack took place. When P4-controller had
determined that an attack took place, it sent a command to
P4-switch to drop subsequent INVITE or REGISTER packets
from that particular port. When the attack had stopped for
one consecutive minute, P4-controller sent a command to P4-
switch to resume to normal processing mode.

DATA
CENTER

Fig. 1: Distributed & source-based SIP DDoS defense at the
network edge

A. Test environment

To experiment with the above model, an Ubuntu virtual
machine with 2GB RAM and 2 CPU is used to run mininet [18]
to create three virtual hosts and three virtual switches topology.
The SIP proxy (10.0.0.1) is attached to switch-1 at port-1, the
attacker (10.0.0.2) is attached to switch-2 at port-2, a legitimate
user (10.0.0.3) is attached to switch-3 port-3. The controller
is running on the host machine and communicate with three
switches via socket connections (port TCP/22221 for switch-1,
TCP/22222 for switch-2, and TCP/22223 for switch-3). This
environment is depicted in Figure. 2.

A P4-compatible virtual switch called bmv2[15] is used
instead of default virtual switch that comes with mininet. Use-
ful topology examples are available [16]. A P4-configuration

generator called p4c-bm[17] is used to convert P4 code to
JSON configuration file that is required by bmv2.

For P4-controller, a python script was used to send com-
mands and interact with P4-switches e.g. check SIP counter,
drop packet, resume to normal operation.

SIPp is a SIP packet generation tool that was used to
generate SIP traffic. For SIP proxy, it is set to run in User
Agent Server (UAS) mode, whereas for SIP clients, it is in
User Agent Client (UAC) mode.

Packet capture (pcap) utility tool tshark is used to verify
packets sent and received by the SIP Proxy (at switch-1:port-1)
and by the SIP clients (at switch-2:port2).

Attacker
10.0.0.2

22221(switch-1) |
Controller.py :22222(switch-2 !
:22223(switch-3 ;

Fig. 2: Test environment

B. Workflow

The workflow consists of three processes which work
together i.e. distributed sensors, centralized policy enforcement
and attack mitigation. The steps for building each of these
processes are described in the next section.

e Distributed sensors. Every port on P4-switch was
designed to function as a sensor and capable of
performing deep packet inspection at the application
layer. For example, every time P4-switch received a
packet, the headers (Ethernet, IP, UDP, SIP) were
parsed and analyzed. With this approach, each port
on P4-switch could count the number of SIP INVITE
that were sent by the node connected to this port.

e Centralized attack detection and policy enforce-
ment. A P4-controller was used to control these dis-
tributed sensors. It involved tasks such as initializing
the sensors, evaluating sipinvite_counter every second,
checking threshold for attack detection, and sending
commands to P4-switch. For attack detection, the
controller calculated the rate of SIP INVITE packets

received by each port on P4-switch. When the rate
exceeded the threshold, the controller sent a command
to P4-switch to drop subsequent SIP INVITE packets
coming from the same ingress port.

e Distributed attack mitigation. After drop command
was received from P4-controller, P4-switch performed
attack mitigation by dropping subsequent SIP INVITE
packets that arrived at the offending port. For example,
when the controller sent a command to P4-switch to
drop subsequent SIP INVITE packets coming from
port 2, P4-switch will only drop SIP INVITE packets
that were coming from port 2. Please note about the
use of port number (instead of source IP address)
as drop criteria because the source IP address are
generally spoofed during a DDoS attack. Also note
that this mitigation only affected SIP INVITE packets
and did not affect other packets e.g. ICMP, HTTP, etc.

C. Methods

Assumptions and baseline. The threshold used for SIP
DoS attack was 10 SIP INVITE packets per second. The
assumption is that human does not initiate more than ten calls
within one second period. When the threshold exceeded, we
assume that malware program was running on the computer
and generated those calls. The attack was assumed to stop
when the threshold was not exceeded for one consecutive
minute. This period was selected so that the legitimate user
would be able to make call as soon as the malware stopped.

To create a baseline and simulate normal working con-
dition, the attacker host (10.0.0.2) was sending SIP INVITE
packet to SIP Proxy once per second. Since it was less than
10 SIP INVITE per second, it did not trigger the defense
mechanism, and P4-switch let the packets passed through. To
simulate SIP DDoS attack, call rate was changed from sending
1 call to 1001 calls per second.

The focus of this experiment was not to stress test the
system, but rather, to verify correct operation of SIP DDoS
detection and mitigation capability.

Building distributed sensors. Distributed sensors were
built by writing P4 code to run on bmv2. The code provided
the switch with instructions for its data plane i.e. how to
process each packet. It started off with packet type definition,
followed by parsing, then ingress and egress pipeline, and
finally, deparsing (Figure 3).

&l g

DATA PLANE
{Packet INGRESS EGRESS Packet |
IN Parser pipeline pipeline Deparser ouT |
3 *l m| >
i 0000)
LL LA TABLE3

| Match-
Action

siplnvite_counter

MR
TABLE3 L
Match-
Action

| P4-SWITCH

Fig. 3: Data plane programming defines how to process each
packet

Packet type definition. Packet type was created by defining
its headers, fields and field size in bytes. For example, Ethernet
frame was characterized by three fields i.e. 48 bits of destina-
tion address, 48 bits of source address, and 16 bits of Ether
type. IPv4, UDP, and SIP packets were also defined similarly,
field by field. These fields would be used in the later stage as
matching criteria for each packet that pass through the switch.

Parsing. The parser was used to extract packet headers and
parser selection based on the hex value of a field that is eval-
uated. The selection will determine whether further recursion
is required. For example, the parser extracted Ethernet header
and looked at the value of etherType field. Since the value
of this field was 0x0800 (hex value for IPv4), a parser called
parse_ipv4 was selected. In turn, parse_ipv4 evaluated
the value of ipv4.protocol field and found 0x11 (hex
value for UDP), and a parser called parse_udp was selected.
The same process applied for parse_udp where it evaluated
latest.dstPort field and found 0x13C4 (hex value for
5060 in decimal i.e. SIP) and then parse_sip was selected.
This recursive process continues until no more parsing is
required and processing is passed to ingress pipeline.

Match-Action Table. A table was used to define the fields
available for matching criteria, as well as the action required
when there was a match. Besides defining what to match, the
table also specified how to match e.g. "LPM” for longest prefix
match, “range” for low and high values, “index” for the index
value of a table entry. SIP INVITE table was created to match
SIP INVITE packets.

Ingress and Egress pipeline. Within ingress and egress
pipeline, there were three tables: ipv4_lpm, forward, and
sipinvite_table. The first two tables were used for
normal IP packet forwarding, while the third was used to look
for SIP INVITE. In this table definition, two match conditions
were evaluated i.e. ingress_port and SIP INVITE. Each
of this condition must be an exact match. When both was a
match, there were two possible actions available i.e. _drop
to drop the packets and _nop (no operation) to let the packets
through.

Counter. A counter was defined to keep a record of the
number of SIP INVITE packets received by each port. This
counter was linked to sipinvite_table which means that
for every row in that table, there would be a counter that
keeps track of the number of packets that matched the criteria
specified in sipinvite_table. In our example, we could
check the number of SIP INVITE packets that were received
from every port on the switch.

Combining sipinvite_table and sipinvite_counter definition
resulted in a table like TABLE II. In this example, there were
24 ports on P4-switch, and there were 1452 SIP INVITE
packets were received from port 2, 231 packets from port 3,
and O from port 24.

Building centralized attack detection and policy en-
forcement. The controller established a control session to
P4-switch to send commands. In chronological order, a
controller performed three tasks: initialization, evaluating
sipinvite_counter and making pass/drop decision.

Initialization. P4-controller initialized P4-switch by

Port number INVITE Counter
1 0x494e56495445 0
2 0x494e56495445 1452
3 0x494e56495445 231
24 0x494e56495445 0

TABLE II: sipinvite_table with sipinvite_counter.

inserting matching criteria and its corresponding action
into match-action tables that were defined previously
e.g. table_add sipinvite_table _nop 2
0x494e56495445 =>. This command created an entry in
sipinvite_table with default action _nop for packets
that met two criteria i.e. it came in at physical switch port 2
and for the first line of SIP packet, it contained the hex value
of 0x494e56495445 i.e. "INVITE”. When a match was
found, sipinvite_counter was increased by 1.

Evaluating sipinvite_counter. Attack detection was
achieved by checking sipinvite_counter on every
switch port at every second. For example "counter_read
sipinvite_counter 2" to check the number of SIP
INVITE packets that had been received by port 2. The
controller then calculated the delta between the value of the
previous check against the value of the current check.

Making pass or drop decision. When the delta was greater
than 10 (i.e. more than 10 SIP INVITE packets per second),
SIP_DOS attack was detected, and DOS mode was activated
for that port. When the delta was lower than the threshold for
six consecutive checks i.e. one full minute, the mode was set
to normal mode. One minute was chosen to strike a balance
between blocking INVITE packets from DoS attack versus
allowing user generated INVITE packets to go through. When
the attack stopped, a legitimate user should be allowed to
initiate a call in the next 60 seconds.

CONTROL PLANE

§ 1. Preparation. Insert match criteria.

§ 2. Evaluate sipinvite_counter

! 3. If #Za SIP_INVITE > 10 per second, then DROP
i

w| |@ 5
(3) "4

{Packet INGRESS Packet |
i N ouT !

Parser pipeline 3 i
E%Fé 55 e Deparser->

Match-
Action

{ P4-SWITCH 007

Fig. 4: Control plane defines what packet to match, checks
counters, and sends commands to switch

Building distributed attack mitigation. When DOS
mode was activated for a particular port, the P4-controller
sent a command to the P4-switch to change the de-
fault action from “pass” to ’drop.” e.g. "table_modify
sipinvite_table _drop 2". After this command had
been executed, subsequent SIP INVITE packets that arrived
at port 2 were dropped. To return to normal mode, the

P4-controller sent "table_modify sipinvite_table
_nop 2" to P4-switch, and subsequent SIP INVITE packets
received at port 2 were allowed to pass through as per normal.

Testing method. Attack simulation was done through
changing the call-rate variable on SIPp. Chronologically, the
test was done as follows:

e Before the attack. On the SIP-Proxy (10.0.0.1), SIPp
was launched with "sipp -sn uas -bg". On the
attacker host (10.0.0.2), SIPp was initially launched
with "sipp —-sn uac 10.0.0.1 -r 1" to start
1 new call every second. ICMP session was also
launched to ping SIP-Proxy once every second. On the
user host (10.0.0.3), SIPp was launched with "sipp
-sn uac 10.0.0.1 -r 1 -bg" to start 1 new
call every second.

e Starting SIP DoS attack. On the attacker host, the
call-rate on SIPp was manually changed from 1 to
1001 by pressing ”*” character. During the DoS attack,
ICMP session should still be running as normal and
not blocked. When the SIP-Proxy was still able to
receive ICMP packet, it demonstrated that the filter
only affects SIP packets. Other applications on the
same host (e.g. ICMP) should still be allowed to pass
through. On the user host, SIPp session should still be
allowed to reach SIP-Proxy as per normal.

e Stopping SIP DoS attack. On the attacker host, the
call-rate on SIPp was manually changed from 1001 to
1 by pressing /" character.

Test verification. Two packet capture sessions were run-
ning, one at the switch port attached to the attacker (labeled
as ”A”), while the other running at the switch port attached to
the SIP-Proxy (labeled as ”B”). At point "A”, we should see
SIP and ICMP packets sent by the attacker host. At point "B”,
we should see SIP packets from the legitimate user and ICMP
packets from the attacker. During normal condition, we should
also see SIP packets from the attacker at point "B, whereas
during DOS mode these SIP packets from the attacker would
have been dropped by switch-2. This scenario is depicted in
Figure. 5.

Evaluation and success criteria. There were three areas
that were evaluated: detection and mitigation capability, time to
detect and mitigate, and system resource consumption. Results
are detailed in the next section.

The following variables were tracked during this experi-
ment:

e The number of packets for SIP INVITE (sent &
received). This number was taken from packet capture
session at point A and B.

e The number of packets for ICMP (sent & received).
This number was taken from packet capture session
at point A and B.

e CPU & Memory consumption. This number was taken
from top system utility running on the host system.

mininet

10.0.0.1 p
Proxy V4 b
e switchl-portl 1
S 4 '

122221 (switch-1) i

Controller.py :22222(switch-2 :

:22223(switch-3 :

Fig. 5: Switch-2 dropped SIP INVITE packets while
allowing ICMP packets to pass through. SIP-Proxy was still

available to serve the legitimate user.

III. RESULTS

In this section, we will see test results from three areas of
evaluation: SIP DoS detection and mitigation, time to detect
and mitigate, CPU and memory consumption.

A. SIP DoS detection and mitigation

Before attack. Three sessions were observed at point B
where the SIP-Proxy was connected (Figure 6). i.e. SIP packets
from the attacker host (red line), ICMP packets from the
attacker host (blue line), and SIP packets from the user host
(green line). The X axis was the time (in seconds) since the
session was started. The Y axis was the rate of SIP INVITE
packet per second. We observed that the SIP-Proxy started
receiving a burst of SIP INVITE packets (DoS attack) after
249 seconds since the session started.

During the attack. The call rate on the attacker host was
increased from 1 call per second to 1001 calls which exceeded
the threshold limit. Increased packets from the attacker host
were observed at Point A where the attacker was connected
(Figure. 7) . When P4-controller identified this condition as SIP
DoS attack, it sent a command to switch-2 to start dropping
SIP INVITE packets.

Observation from Point B (the SIP-Proxy side) shown
an initial burst of SIP INVITE packets from the attacker
host. Once switch-2 started dropping the packet, SIP-Proxy no
longer received SIP INVITE from the attacker host (circled)
as depicted in Figure. 8.

After the attack. Call rate on the attacker host was
decreased from 1001 to 1 which was under attack threshold and
therefore P4-switch sent a command to switch-2 to unblock the
port.

ICMP packets were not affected. When P4-switch
dropped SIP INVITE packets, ICMP packets were still de-
livered as usual (as depicted by the blue line in Figure 8).

Packets|1 sec

1] 200 400 600

sk o select packer 8226 (7945 = 1),

Mame | Display filter | Color
attacker-sip sip.Method == "INVITE" && ip.addr == 10.0.0.2
attacker-cmp icmp &&ip.addr == 10.0.0,2

dient-sip sip.Method == "INVITE" &&ip.addr == 10.0.0.3

Fig. 6: Before attack period (circled): SIP-Proxy received SIP
& ICMP packets from the attacker host.

= N

1600 -

Packets|1 sec

1200 -

800 -

'..\

400 | /‘b ‘
| ” ;
] _i I) N— ..I
0 600

Time (s)
Olick to select 2 portion of the graph.
Mame |Dis¢:»la\-I filter |Color St
attacker-sip sip.Method == "INVITE™ && ip.addr == 10.0.0.2 Lin
attacker-icmp icmp && ip.addr == 10.0.0.2 Lin

Fig. 7: Increased SIP INVITE packets from the attacker host.

This demonstrates that the filtering only affected SIP INVITE
and not other packets. In the case where a computer was
infected with botnet/malware, the user would still be able to
use other applications while SIP INVITE packets generated by
the malware are blocked.

B. Time to detect and mitigate

The time it took to start blocking SIP INVITE packets
was 1.47 seconds. This period was calculated by subtracting

60 |
sl —'—_—*
SIP DoS attack
ao L
o
S
Foaor
=
]
o
a0 b
10 -
0L : !
0 200

Slick to selecr packet 8226 (784s = Il

Mame Display filter | Col
attacker-sip sip.Method == "INVITE" && ip.addr == 10.0.0.2
attacker-icmp icmp && ip.addr == 10.0.0.2

dient-sip sip.Method == "INVITE" && ip.addr == 10.0.0.3

Fig. 8: After initial burst of SIP INVITE, the SIP-Proxy is
no longer received packets from the attacker (circled).

the time when the P4-controller sent the command from the
last SIP INVITE packet received by the SIP-Proxy (Table. III).

Time the controller sent
command to SW2
(in second from start)
251.014599

Time the last INVITE packet
received by SIP-Proxy
(in second from start)

252.162154

Time to block
(second)

1.147555

TABLE III: Time taken to start blocking was 1.47 second.

C. CPU and Memory resource consumption

On Switch 1 (connected to the SIP-Proxy), there was a
brief period of time where the CPU spiked to 24.8%. This
was the time when the attack started. After mitigated, CPU
consumption returned to normal. Consumption on the memory
was spiked to 3% as depicted in Figure. 9

On Switch 2 (connected to the attacker), CPU consumption
was peaked at 71% during SIP DoS attack, but on average it
was at 24.49%. (Figure 10). Memory consumption was peaked
at 2.9%.

IV. DISCUSSION

In contrast to the destination-based defense strategy that is
commonly deployed to deal with SIP DDoS attack, this paper
introduced source-based defense strategy i.e. attack detection
and mitigation is performed at the location where the attack
is originated. This proposal utilizes P4 for SIP DoS attack
detection and SDN controller for attack mitigation. P4 offers
rich programmability and metadata. Coupled with control
plane, it provides centralized security policy management with
the capability to enforce the policy on many remote switches.

Switch 1

30

25 :

20
H

15

10 ‘

Fig. 9: CPU and Memory consumption on Switch 1 (attached
to the SIP-Proxy)

Switch 2
80

. |

60 1 ii\

50

40 i

30

20

10 ‘ii

Fig. 10: CPU and Memory consumption on Switch 2
(attached to the attacker)

These results suggest that source-based approach worth serious
consideration for deployment.

The result highlights that source-based defense was able to
deliver effective attack detection and mitigation. It did that at
the first network hop, and therefore attack-related traffic did
not propagate further upstream. Furthermore, the tasks were
accomplished within reasonable system resource consumption.
With SIP INVITE generated at 1001 calls per second, it took
1.47 seconds to detect and mitigate the attack. During the
attack, average CPU utilization was 24.49% (peak at 71%).
Memory consumption was peaked at 3%.

The result also displayed that while in blocking mode, it
did not affect other legitimate traffic as demonstrated by ICMP
packets. Ping request and reply packets were still able to flow
through while SIP DDoS was in blocking mode.

The authors [3] states that ”An ideal comprehensive DDoS
defense mechanism must have specific features to combat

DDoS flooding attacks both in real-time and as close as
possible to the attack sources.” To that end, the result presented
in the previous section met this description.

For high-speed performance requirements, hardware-
accelerated chip are available i.e. instead of running P4 code
on software or on general purpose CPU; it can also be executed
on NPU (Network Processor), FPGA (field-programmable gate
array), or even ASIC (application-specific integrated circuit)
[11][13]. Project whippersnapper provides P4 benchmark suite
to compare the performance of various hardware platform [14].

Current limitation. At the time of writing, support for
encrypted packets (e.g. TLS and DTLS) are not natively
supported by P4 and therefore relies on functions provided
by the underlying hardware.

V. CONCLUSION

This paper proposed First-hop SIP DDoS detection and
mitigation using data plane programming (P4) and control
plane programming of an Ethernet switch. This approach
creates source-based defense component that can be combined
with existing destination-based defense component to create
more scalable SIP DDoS solution.

Aggressive deployment of Software-Defined Networking
(SDN) and Network Function Virtualization (NFV) creates
synergy and opportunity for this approach to be implemented
organization-wide. Many organizations are upgrading their
existing network infrastructure to support SDN and NFV
concepts. They need it to support the requirement to innovate
faster than their competitors and to grow their business.
Since the concepts presented in this proposal are aligned with
SDN and NFV concepts, this solution could be deployed on
the same SDN and NFV infrastructure that they are using.
This infrastructure-sharing concept alleviates the need for
specialized hardware/software dedicated for this purpose and
therefore ease the deployment effort.

The network operator has the option to plan for an in-
cremental deployment. They could program P4-switch and
SDN controller to perform the same functions as existing
switches e.g. MPLS, VLAN, Routing, etc. The users would
not experience service degradation or even aware that the
underlying infrastructure has changed. Since P4-switch is
backward-compatible with existing switch, it gives network
operator with flexibility as for where and when they will
deploy P4-capable switch.

In addition to incremental deployment, network operator
also has the options to install P4-switch at their network
edge e.g. in network-to-network or ISP-to-ISP interconnection
scenarios. The “First-hop” in this instance is not coming
from an end-user, but rather from a network peer. P4-switch
can provide SIP DDoS protection for traffic coming from a
particular peer-network or ISP. Having this tool in place would
motivate network operation team for deployment.

Another motivation for network operator would come in
the form of financial benefits. In some cases, network operator
would have to pay a fee to their peers for bandwidth usage
(i.e. settlement fee) regardless whether it was legitimate traffic
or traffic generated by a DDoS attack. As the operator can

drop DDoS traffic at the edge of their network, they would
not have to bear the cost of transporting DDoS traffic. This
financial benefit would provide objective and concrete business
justification for the deployment.

REFERENCES

[1] ”NG911 Cybersecurity ~ Primer ~ FINAL 508C (003).pdf™,
Department of Homeland Security, 2017. [Online]. Available:
https://www.dhs.gov/sites/default/files/publications/
NG911%20Cybersecurity %20Primer%20FINAL%20508C%20(003).pdf.
[Accessed: 09- Jun- 2017].

[2] J. Yu, ”An Empirical Study of Denial of Service (DoS) against VoIP,”
2016 15th International Conference on Ubiquitous Computing and
Communications and 2016 International Symposium on Cyberspace and
Security (IUCC-CSS), Granada, 2016

[31 S. T. Zargar, J. Joshi, and D. Tipper, A survey of defense mechanisms
against distributed denial of service (DDOS) flooding attacks, IEEE
Commun. Surv. Tutorials, vol. 15, no. 4, 2013.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-
ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, D. Walker,
”P4: Programming protocol-independent packet processors”, SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87-95, Jul. 2014.

[5] G. Ormazabal, S. Nagpal, E. Yardeni, and H. Schulzrinne, Secure SIP:
A scalable prevention mechanism for DoS attacks on SIP based VoIP
systems, in Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2008.

[6] F. Huici, S. Niccolini, and N. DHeureuse, Protecting SIP against very
large flooding DoS attacks, GLOBECOM - IEEE Glob. Telecommun.
Conf., 2009.

[71 1. Hussain, S. Djahel, Z. Zhang and F. Nat-Abdesselam, A compre-
hensive study of flooding attack consequences and countermeasures in
Session Initiation Protocol (SIP)”, Security Comm. Networks, 2015

[81 Z. Liu, X. Yin and H. Lee, "An Efficient Defense Scheme against
SIP DoS Attack in SDN Using Cloud SFW,” 2014 Ninth Asia Joint
Conference on Information Security, Wuhan, 2014

[9]1 B. Astuto, a Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T.
Turletti, A Survey of Software-Defined Networking: Past, Present, and
Future of Programmable Networks, Ieee Commun. Surv. Tutorials, vol.
16, no. 3, 2014.

[10] A. D. Keromytis, ”A Comprehensive Survey of Voice over IP Security
Research,” in IEEE Communications Surveys & Tutorials, vol. 14, no.
2, Second Quarter 2012.

[11] P. Bencek, V. Pu, H. Kubtov, ”P4-to-VHDL: Automatic Generation of
100 Gbps Packet Parsers”, 2016 IEEE 24th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
May 2016.

[12] Q. Yan, R. Yu, Q. Gong, and J. Li, Software-Defined Networking (SDN)
and Distributed Denial of Service (DDoS) Attacks in Cloud Computing
Environments: A Survey, Some Research Issues, and Challenges, IEEE
Commun. Surv. Tutorials, no. ¢, 2015.

[13] P. Bosshart, G. Gibb, H. Kim, G. Varghese, N. Mckeown, M. Iz-
zard, F. Mujica, and M. Horowitz, Forwarding Metamorphosis: Fast
Programmable Match-Action Processing in Hardware for SDN, Acm
Sigcomm, 2013.

[14] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, J. Rexford, R. Soul, and
H. Weatherspoon, Whippersnapper : A P4 Language Benchmark Suite.

[15] pdlang, p4lang/behavioral-model, GitHub, 07-Jun-2017. [Online].
Available: https://github.com/p4lang/behavioral-model. [Accessed: 12-
Jun-2017].

[16] p4lang, p4lang/tutorials, GitHub, 01-Jun-2017. [Online]. Available:
https://github.com/p4lang/tutorials. [Accessed: 12-Jun-2017].

[17] p4lang, p4lang/p4c-bm, GitHub, 09-May-2017. [Online]. Available:
https://github.com/p4lang/p4c-bm. [Accessed: 12-Jun-2017].

[18] M. Team, Mininet, Mininet: An Instant Virtual Network on your Laptop
(or other PC) - Mininet. [Online]. Available: http://www.mininet.org/.
[Accessed: 12-Jun-2017].

