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Abstract. Computational prediction ofcis-regulatory binding sites is widely ac-
knowledged as a difficult task. There are many different algorithms for searching
for binding sites in current use. However, most of them produce a high rate of
false positive predictions. Moreover, many algorithmic approaches are inherently
constrained with respect to the range of binding sites that they can be expected
to reliably predict. We propose to use SVMs to predict binding sites from mul-
tiple sources of evidence. We combine random selection under-sampling and the
synthetic minority over-sampling technique to deal with the imbalanced nature
of the data. In addition, we remove some of the final predicted binding sites on
the basis of their biological plausibility. The results show that we can generate a
new prediction that significantly improves on the performance of any one of the
individual prediction algorithms.

1 Introduction

In this paper, we address the problem of predicting transcription factor (TF) binding
sites (binding motifs) within sequences of regulatory DNA. Currently, experimental
methods for characterising the binding sites found in regulatory sequences are both
costly and time consuming. Computational predictions are therefore often used to guide
experimental techniques. Computational prediction ofcis-regulatory binding sites is
widely acknowledged as a difficult task [12]. Binding sites are notoriously variable
from instance to instance and in higher eukaryotes they can be located considerable
distances, both upstream and downstream, from the gene being regulated.

There are many different algorithms for searching for binding sites in current use,
such as those proposed in [1] and [2]. However, most of them produce a high rate of
false positive predictions. The use of algorithmic predictions prone to high rates of
false positives is particularly costly to experimental biologists using the predictions to
guide experiments. Moreover, many algorithmic approaches are inherently constrained



with respect to the range of binding sites that they can be expected to reliably predict.
Given the differing aims of these algorithms it is reasonable to suppose that an effi-
cient method for integrating predictions from these diverse strategies should increase
the range of detectable binding sites. Furthermore, an efficient integration strategy may
be able to use multiple sources of information to remove many false positive predic-
tions, while also strengthening our confidence about many true positive predictions. In
[6], five popular motif discovery algorithms are run multiple times with different pa-
rameters, then multiple results are collected and grouped by a score rank. The final
predictions are obtained based on voting, smoothing and extracting methods. In [7], a
software tool,MultiFinder, was developed. It performs automated motif searching us-
ing four different profile-based motif finders (algorithms), and results from each motif
finder are ranked according to the user specified scoring function. The user can select
any combination of motif prediction tools.

The nature of the problem allows domain specific heuristics to be applied to the
classification problem. Instead of applying voting as discussed in [6], and merging mul-
tiple predictions according to the user specified scoring function mentioned in [7], we
attempt to reduce these false positive predictions using classification techniques taken
from the field of machine learning. In [10] and [11], we found that the integrated clas-
sifier, ormeta classifier, when using a support vector machine (SVM) [9] outperformed
each of the original prediction algorithms. In particular the integrated classifier has a
better tradeoff between recall and precision.

In this work, we extend our work in [11] by making a major change to the way the
training sets are constructed. Previously we have only used proximal annotated DNA
sequences close to a gene as both positive and negative examples of binding sites. How-
ever a potential problem with this approach is that the nucleotides labelled as not being
part of a binding site may be incorrectly labelled, due to unreliable biological evidence.
Here we introduce a newbackgrounddataset which draws negative examples from se-
quences that are5000-4500 base pair (bp) away from any gene. In this way we hope to
ensure that our negative examples are much less likely to be regulatory.

We use a6-ary real valued vector, each element of which is a prediction result from
one of the algorithms, for a particular nucleotide position, as the input of the system.
The data consists of a merger of promoters from the mouse genome (M.musculus),
annotated with transcription factor (TF) binding sites taken from theABS1 andORe-
gAnno2 databases. In total there are47 promoter sequences (regulatory region contain-
ing transcriptional start site), including142 TF binding sites. The data also includes250
upstream, non-coding sequences from which negative examples may be taken (back-
ground). The background sequences were extracted using theUCSCgenome website3.

In this work, one challenging aspect is the imbalanced nature of the data and that
has led us to explore some powerful techniques to address this issue. The data has two
classes: either binding sites or non-binding sites, with about97% being non-binding
sites. We combine random selection under-sampling and SMOTE [3] over-sampling

1 http://genome.imim.es/datasets/meta2005/index.html
2 http://www.oreganno.org/oregano/Index.jsp
3 http://genome.ucsc.edu/



techniques. In addition, we remove some of the final predicted binding sites on the
basis of their biological plausibility. The proposed method can be seen in Figure 1.
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Fig. 1. The integration, sampling and classification of the data. The6 algorithms give their own
value for each sequence position and one such column is shown. The6 results are combined
into a 6-ary real valued vector. The data was under and over sampled, and then classified using a
meta-classifier.

2 The description of the dataset

As mentioned in Section 1, the data consists of a merger of promoters annotated with
transcription factor binding sites for mouse from theABSandORegAnnodatabases.
This data is denoted asABS-And-ORegdata. The data also includes250 upstream, non-
coding sequences, denoted asbackgrounddata.

– ABS-And-OReg
There are47 annotated promoter sequences in total. Sequences extracted fromABS
are typically around500 base pairs(bp) in length and those taken fromORegAnno
are typically around2000bp in length. Most of the promoters are upstream of their
associated gene although a small number extend over the first exon and include
intronic regions: where promoters were found to overlap they were merged. The
total dataset is comprised of60851 nucleotides, each of which may be part of a
binding site.

– Background
250 regions were randomly picked from across the mouse genome (forward strand
genes only). The first500bp from each sequence were selected i.e. the nucleotides
that are5000-4500 away from the gene with which they are associated. The idea is
to extract non-coding sequences that are also probably non-regulatory.



A check is also made that the selected region is indeed at least4500 base pairs
away from any neighbouring gene. It is common that a neighbouring gene can be
close by and/or overlapping. The data is a sequence of124467 nucleotides, and is
believed to contain no TF binding sites.

For each nucleotide there is a real valued result from each of the six sources of
evidence. Each nucleotide also has a label denoting whether it is part of a known binding
site.

Six sources of evidence were generated fromUCSC genome website, and were
used as input in this study. Computational predictions of binding sites were generated
usingMotifLocatorandEvoSelex. MotifLocatoruses the PHYLOFACTS matrices from
the JASPAR database4 to scan for stringent matches in the sequences.EvoSelexuses
motifs from [4] and theFuzznucalgorithm to search for consensus sequences. A number
of sources of genomic annotation evidence were extracted from the UCSC genome
browser5: Regulatory Potential(RP) is used to compare frequencies of short alignment
patterns between known regulatory elements and neutral DNA. The RP scores were
calculated using alignments from the genomes of human, chimpanzee, macaque, rat,
mouse, cow and dog.PhastConsis an algorithm that computes sequence conservation
from multiple alignments using a phylo-HMM strategy. The algorithm was used with
two levels of stringency. TheCpGIslandalgorithm finds ‘CG’ nucleotide sub-sequences
in the regulatory region which are typically found near transcription start sites and are
rare in vertebrate DNA.

3 Methods

3.1 Sampling

In our dataset, there are less than2.93% binding positions amongst all the vectors, so
this is an extremelyimbalanceddataset [8]. Since the dataset is imbalanced, the su-
pervised classification algorithms will be expected to over predict the majority class,
namely the non-binding site category. There are various methods of dealing with im-
balanced data [13]. In this work, we concentrate on the data-based method [3]: us-
ing under-sampling of the majority class (non-binding sites) and over-sampling of the
minority class (binding site examples). We combine both over-sampling and under-
sampling methods in our experiments.

For under-sampling, we randomly selected a subset of data points from the majority
class. In [8], the author addresses an important issue that the class imbalance prob-
lem is only a problem when the minority class contains very small subclusters. This
indicates that simply over sampling with replacements may not significantly improve
minority class recognition. To overcome this problem, we apply a synthetic minority
over-sampling technique (SMOTE) as proposed in [3]. For each member of the minor-
ity class its nearest neighbours in the same class are identified and new instances are
created, placed randomly between the instance and its neighbours.

4 http://jaspar.genereg.net/
5 http://genome.ucsc.edu/



3.2 Biologically Constrained Post-Processing

We propose a two-step post-processing over the SVM predictions. First, since TF bind-
ing sites are almost never found within anexon, an exon prediction can be considered
to be negative evidence for a TF binding site at a given position. Although exon predic-
tions are still not perfect, they are much more robust than TF binding site predictions by
several orders of magnitude. There is much less noise in the signals that delimit them
in the sequence. Therefore, predicted components of a TF binding site will be removed
if they are within a predicted exon position.

One important concern when applying classifier algorithms to the output of many
binding site prediction algorithms is that the classifier decisions could result in biolog-
ically unfeasible results. The original algorithms only predict reasonable, contiguous
sets of base pairs as constituting complete binding sites. However when combined in
our meta-classifier each base pair is predicted independently of the neighbouring base
pairs, and it is therefore possible to get lots of short predicted binding sites of length
one or two base pairs. In this and a previous study, it was observed that many of the
predictions made by the classifiers were highly fragmented and too small to correspond
to biological binding sites. It was not clear whether these fragmented predictions were
merely artifacts or whether they were accurate but overly conservative.

Since the limits of biologically observed binding site lengths are typically in the
range5-30 bp, we simply remove any predicted TF binding site with a length smaller
than5bp. It was found that removal of the fragmented predictions had a considerable
positive effect on the performance measures, most notably forPrecision.

3.3 Classifier Performance

In cases such as the imbalanced data simple error rates are inappropriate - an error
rate of2.93% can be obtained by simply predicting the majority class. Therefore it is
necessary to use other metrics. Several common performance metrics, such as Recall
(also known as Sensitivity), Precision, False Positive rate (FP-Rate) and F-Score, can
be defined using the confusion matrix (see Table 1) computed from the test results:

Table 1.A confusion matrix

Predicted Negatives Predicted Positives
Actual Negatives True Negatives (TN) False Positives (FP)
Actual Positives False Negatives (FN) True Positives (TP)

Recall= TP
(TP + FN), Precision= TP

(TP + FP),

F-Score= 2·Recall·Precision
Recall+Precision, FP-Rate= FP

FP+TN.

Furthermore the Correlation Coefficient (CC) [12], is given below:

CC =
TP · TN− FN · FP√

(TP +FN)(TN+FP)(TP+FP)(TN+FN)
,



Note that for all the measures except FP-Rate a high value is desirable. Precision is
the proportion of the positively categorised samples that are actually part of a binding
site. Increasing the Precision of the prediction is one of the main goals of our meta-
classifier. However increasing Precision is normally accompanied by a decrease in the
Recall, so the F-Score, which takes into account both Recall and Precision, is a useful
measure of overall performance. The Correlation Coefficient (at nucleotide level) mea-
sures the correlation of the prediction with the target. The FP-Rate is the proportion of
all the negative samples that are incorrectly predicted. The original algorithms generally
have a high FP-Rate and reducing this is another major goal of our classifier.

4 Experiments: binding sites prediction

4.1 Simulation setup

First theABS-And-ORegdata was divided into a training set that consisted of2/3 of
the data, the remaining1/3 including20 promoter sequences was used as the test set.
We consider the following cases: 1) all non-binding site examples are selected from the
ABS-And-ORegdata; 2) all non-binding site examples are selected from thebackground
data; 3) we repeat case 2) using only4 features, that is without the two prediction
algorithmsMotifLocatorandEvoSelexas inputs. In the last two cases, the training sets
are actually a combination ofABS-And-ORegandbackgrounddata, since all training
examples of components of TF binding sites are fromABS-And-ORegand all non-
binding site examples are frombackground.

Amongst the data, there are repeated vectors, some with the same label (repeated
items), and some with contradictory labels (inconsistent items). These items are un-
helpful in the training set and were therefore removed. The training datasets are then
consistent. However, in the case of the test set, the full set of data is considered.

In theABS-And-ORegdata, there are fewer than2.93% binding positions amongst
all the vectors, so this is imbalanced data. To cope with this problem we used sampling.
For under sampling, a subset of data points from the majority class is randomly selected.
In this work, we apply SMOTE for over sampling, where we take9 nearest neighbours,
and increase the number of items in the minority class by a factor of7. The final ratio
of majority to minority class is set to1 in all the following experiments. Note that we
normalise the consistent training set before sampling so that each feature has zero mean
and unit standard deviation.

After sampling, there are3 different training sets based on each case mentioned
above.

Case1: original data fromABS-And-ORegdenotedorig.
Case2: postive examples fromABS-And-ORegand negative examples fromback-

grounddenotedorig+bg.
Case3: As case2 but using only four features, denoted byorig+bg 4f.
Table 2 gives the size of these datasets.
In the following experiments, we apply an SVM for classification. The SVM soft-

ware is publicly available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm/. Theradial ba-
sis kernelis employed. Therefore the SVM has two free parameters: thecostC andγ re-
lated to the radial basis kernel function. The range forC is set to[20, 250, 500, 1000,



2000, 5000] and forγ is [0.001, 0.01, 0.1, 1, 10]. In all the following experiments,
the best values ofC andγ areC = 5000 andγ = 10, selected by standard5-fold cross
validation.

Table 2.Description of datasets used in this work (bp denotes base pair).

Type Dataset Negative(bp) Positive(bp) Size(bp)
Original ABS-And-OReg 59070 1782 60851
Original Background 124467 0 124467

orig 5446 5446 10892
Training orig+bg 5757 5757 11514

orig+bg 4f 5264 5264 10528
Test test (fromABS-And-OReg) 18124 784 18908

4.2 Experimental results

Before presenting the main results we should point out that predicting binding sites
accurately is extremely difficult. The best individual original algorithm (EvoSelex) pro-
duces over11 times as many false positives as true positives on the test set. This makes
the predictions almost useless to a biologist as most of the suggested binding sites will
need expensive experimental validation and most will not be useful. Therefore the key
aim of our combined classifier is to reduce the number of false positives while increas-
ing the number of true positives given by the original algorithms.

Table 3 shows experimental results without post-processing. For comparison, we
also give results of the two original prediction algorithms:MotifLocatorandEvoSelex,
over the test set.

Table 3.Classification results without post-processing (in percentage %)

RecallPrecisionF-ScoreFP-Rate CC

MotifLocator 42.5 7.1 12.1 24.2 8.4

EvoSelex 34.8 8.0 13.0 17.2 9.1
orig 43.1 12.5 19.4 13.0 17.2

orig+bg 66.1 13.3 22.1 18.7 23.4
orig+bg 4f 60.5 16.3 25.7 13.4 26.0

The first notable feature of these results is that the meta classifiers have produced
stronger Recalls and Precisions than those of the two original algorithms. Therefore, the
F-Score, which can be viewed as an average of the Recall and Precision, has also been



increased. The nucleotide level correlation coefficient has been significantly improved.
As for the FP-Rate, the meta classifiers trained onorig+bg 4f andorig, have reduced
the FP-Rate by22.1% and 24.4%, respectively, compared withEvoSelex, while the
meta classifier trained onorig+bg has increased the FP-Rate by8.7%.

The second notable feature of these results is that the meta classifier trained on
orig+bg 4f, which used only4 features, produced a better performance than the one
that used all6 features when looking at the F-Score and CC values, which assess the
overall performance of a classifier.

One more notable feature of these results is that one can obtain a better overall
performance when using non-binding site examples from thebackgroundset rather
than from theABS-and-ORegdataset.

Finally we investigate how the results can be further improved by removing those
predictions of base-pairs being part of a binding site that are not biologically plausible.
As described earlier we find that removing predictions that are either within exons or
not part of a contiguous predicted binding site of at least five nucleotides gives a better
result. So here we take the predictions of our experimental results and remove all those
that do not meet the criteria. The results can be seen in Table 4.

Table 4.Classification results with and without post-processing (in percentage %)

RecallPrecisionF-ScoreFP-Rate CC
EvoSelex 34.8 8.0 13.0 17.2 9.1

orig+bg 4f 60.5 16.3 25.7 13.4 26.0

orig+post processing 40.6 13.7 20.4 11.1 17.9
orig+bg+post processing 61.0 14.8 23.8 15.2 24.2

orig+bg 4f+post processing 58.0 17.5 26.9 11.8 26.8

It shows that all FP-Rates are reduced when compared with the best original algo-
rithm EvoSelex. In addition, comparingorig+bg 4f+post processingwith orig+bg 4f,
one can see that the FP-Rate has been further reduced to11.8%. Looking at two over-
all performance values, F-Score and CC, it shows that the accuracy of predictions is
further improved after post-processing. Interestingly,orig+bg+post processinghas a
larger number of true positives (Recall) thanorig+bg 4f+post processing. However,
orig+bg 4f+post processinghas a lower FP-Rate and better overall performance on F-
Score and CC. Specifically,orig+bg 4f+post processinghas increased the Recall by
66.7%, the Precision by118.8%, the F-Score by106.9% and CC by194.5%, while
reduced the FP-Rate by31.4% when compared with the original prediction algorithm
EvoSelex.

To further analyse our method, we investigate in more detail the predictions on
each test promoter. Figure 2 shows the nucleotide level correlation coefficient within
each promoter between the known nucleotide positions and the predicted nucleotide
positions for each prediction algorithm.



It can be seen that there are more higher correlation (bright patterns) between the
known nucleotide positions and the predicted nucleotide positions based on each pro-
moter given by the3 meta classifiers. It indicates that the two original prediction algo-
rithms can only successfully find few parts of binding sites, while the meta classifiers
can detect more parts of binding sites by integrating several diverse sources. In addition,
although both meta classifiersorig andorig+bg includeMotifLocatorandEvoSelexas
part of the input, these two prediction algorithms do not contribute significantly in the
final decision to the meta classifiers. For example, there is a relatively high CC value
in both MotifLocator andEvoSelexpredictions within test promoter6, but all 3 SVM
meta classifiers produce a lower CC value. One more example is test promoter5. Both
MotifLocatorandEvoSelexpredictions have low correlation with the known nucleotide
positions, but the3 meta classifiers give a very high CC value. It suggests that those4
suggestive evidences rather than the two original prediction algorithms are much more
important for the classification.
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Fig. 2. Correlation coefficients between predicted positions and the known positions in each test
promoter. Note that predictions from3 meta classifiers are post-processed. High correlations are
associated with brighter cells. Poor correlations are associated with darker cells.

5 Discussion

The identification of regions in a sequence of DNA that are regulatory binding sites is a
very difficult problem. Here we have confirmed our earlier results showing that a meta
classifier using multiple sources of evidence can do better than any of the original algo-
rithms individually. In particular it was possible to reduce the number of false positive
predictions.

Importantly we have also shown that using negative data that is very probably cor-
rectly labelled leads to a better prediction results. This is perhaps unsurprising, but it



does suggest that some of the original data in the promoter sequences may be incor-
rectly labelled. This suggests that more binding sites exist on the promoter sequences
than have been found by the expensive experimental techniques currently needed to
produce such predictions.

Finally results that the meta classifier trained on only4 features can produce a better
performance than the one used all6 features demonstrate the importance of feature
selection. One needs to choose sources of complementary evidences which are in fact
the most useful to consider. In the future, we intend to cope with this by applying the
SVM classification based onRecursive Feature Elimination[5].

Much further work is needed to extend our current methods. The technique needs
to be evaluated on other species and the biological significance of the predictions needs
close examination. However it seems likely that the use of background data, as demon-
strated here, will facilitate generally improved predictions.
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