A Self-Stabilizing Pantoja-like Indirect
Algorithm for Optimal Control

Bruce Christianson

Numerical Optimisation Centre, University of Hertfordshire
Hatfield, England, Europe

Abstract. In 1983 Pantoja described a computationally efficient stage-
wise construction of the Newton direction for the discrete time optimal
control problem. Automatic Differentiation can be used to implement
Pantoja’s algorithm, and calculate the Newton direction without trun-
cation error, and without extensive manual re-writing of target function
code to form derivatives.

Pantoja’s algorithm is direct, in that the independent variables are the
control vectors at each timestep. In this paper we formulate an indirect
analogue of Pantoja’s algorithm, in which the only independent vari-
ables are the components of a costate vector corresponding to the initial
timestep. This reformulated algorithm gives exactly the Newton step for
the initial costate with respect to a terminal transversality condition: at
each timestep we solve implicit equations for the current controls and
successor costates. A remarkable feature of the indirect algorithm is that
it is straightforward to compensate for the effect of non-zero residuals in
the implicit costate equations. The indirect reformulation of Pantoja’s
algorithm set out in this paper is a suitable basis for verified optimization
using interval methods.

1 Introduction

Consider a discrete-time optimal control problem in the following direct form:
choose u; € RP for 0 < i < N so as to minimize

z=F(zN)
where z(is some fixed constant and the state equation is
xip1 = fi(zi,u;)) for 0 <i < N.

Here each f; is a smooth map from R? x R? — R? and F' is a smooth map
from R? to R. The dimension of u; may depend upon the timestep 7, but for
notational convenience we omit this refinement.

We lose nothing by restricting attention to target functions of this form: the
more usual formulation where z has the form z = Zfi_ol Fi(z;,u;) + Fn(zn),
can be reduced to the form z = F(zy) by augmenting each state z; with a
new component v; € R defined by vo = 0;v;41 = v; + F;(x;,u;) and defining
F(.TN,’UN) =uN + FN(CEN).

An obvious approach to solving an optimal control problem is to apply New-
ton’s method. In the direct formulation the Np independent variables are the
components of the control vectors u; : 0 < i < N. In 1983, Pantoja presented a a
stagewise construction of the Newton direction for the direct formulation [14, 15].
Pantoja’s algorithm is a modification of the Differential Dynamic Programming
(DDP) approach [13,11] and so incurs amazingly low computational costs: order
p + ¢ times the computational cost of evaluating z, independent of NV, together
with order (p + ¢)® multiply-and-add operations per time step, less if there is
structural sparsity. Checkpointing [5, §5] can be used to reduce the total space
requirement of Pantoja’s algorithm for a typical problem to the same order as
the storage required for w. Automatic Differentiation (AD) techniques [10] can
be used to implement Pantoja’s algorithm, allowing the Newton direction for
the u; to be calculated accurately without incurring any truncation error and
without requiring extensive manual re-writing of target function code to form
first or second derivative expressions explicitly [5, 6, 3].

In this paper we show that an algorithm of analogous form to Pantoja’s
algorithm, and which enjoys the same implementation advantages, can be de-
rived in an indirect formulation, where the only independent variables are the
components of a costate vector Fy corresponding to the initial timestep. Further-
more, the indirect algorithm can be made self-stabilizing, in the sense that the
construction compensates for the first-order effect of non-zero residuals in the
implicit equations which are solved for the control values at each timestep.

This paper is organized as follows. In the next section we characterize the
Newton step for both direct and indirect formulations of the discrete time op-
timal control problem. In Section 3 we set out Pantoja’s direct algorithm to
construct the Newton step, and review its properties together with the applica-
tion of AD. Section 4 contains the necessary tool-kit of technical machinery for
establishing properties of algorithms of this general form in either formulation. In

Section 5 we introduce a new, indirect, reformulation of Pantoja’s algorithm, and
show that it provides the Newton step for the initial costate. We then show how
to enhance this indirect algorithm so as to compensate for the effect of non-zero
residuals in the adjoint state-control equations. In the final section we discuss
the significance of these results and set out a manifesto for future research.

2 Direct and Indirect Formulations

It is convenient to characterize the Newton step for the direct formulation of the
discrete-time optimal control problem in terms of the adjoint equations corre-
sponding to the state equations for the original problem. Define adjoint state
and adjoint control variables, Z; € R? and @; € RP respectively, by the adjoint
state and adjoint control equations:

oy =Fl(an); @=[fl) @i wi=[fl] @i for0<i<N

where -7 denotes transpose, and fz.;and f, ; are the Jacobians of f; with respect
to x; and u; respectively, evaluated at (z;,u;). Then @; = 0z/0u; by the chain
rule, and a necessary condition for optimality is that @; = 0 for 0 <i < N.

In this direct formulation, the Np independent variables are the are the
components of the control vectors u; : 0 < i < N. The variables u;, Z; and z; are
all dependent. We remark in passing that this direct formulation differs from a
Hamiltonian formulation in which Lagrange multipliers A; corresponding to the
state evolutions f; are also independent variables, although at the optimum the
dependent variables Z; in the direct formulation have the same values as the \;
have in the Hamiltonian formulation.

Suppose that we linearize both the state and adjoint state equations with
respect to a perturbation t; = Au; of the control variables (u; : 0 < i < N).
Then the Newton direction is the value of ¢ for which the linearizations of the
adjoint controls u; all vanish, ie such that u +¢-V, u =0 or

_ ou; .
ui-i—zaujtjzo for 0 <i < N.

In the early stages of optimization, the #; may be quite large. Pantoja’s algorithm
constructs, for arbitrary starting values u, the Newton direction ¢.

In the indirect formulation, the only independent variables are the ¢ com-
ponents of a costate vector Iy corresponding to the initial timestep. At each
timestep i, the current control vector u; and the successor costate Z;;; are im-
plicitly defined, in terms of the current state z; and current costate Z;, by the
costate equations

Ti— [falv,i(wiaui)]iji+1 =0

and the Pontryagin equations

[f;,i(xi: Ui)]TCEi+1 =0.

These implicit equations are generally non-linear in u;, and so must be solved
by some iterative method. Once values are available for the current control u;
and the successor costate #;41, the state equation z;41 = fi(z;,u;) then gives
Z;t1 in terms of x; and u;.

In the indirect formulation, the requirement for the path to be optimal is
that Zny — F'(zny) = 0 which we observe can be regarded as a form of the
transversality condition. The residual value

r ::i‘N —F’(:L‘N)

of the transversality equation thus gives a measure of how far the initial costate
value %o differs from that for the optimum path. The outer optimization iteration
must then adjust the value of the initial costate o so as to reduce the size of r.
See [12, Chapter 3] for a very early AD implementation of an approach in this
spirit.

The remarkable fact which we demonstrate in this paper is that Pantoja’s
algorithm can be transformed into an algorithm which gives exactly the Newton
step ag for the initial costate &y with respect to the transversality condition, ie
such that r + ag - Or/0Zo = 0 or

IN — F’(:L‘N) +ag - iN (i‘N — F’(I‘N)) =0.
8560

Particularly in the early stages of optimization, the transversality residual r may
be significantly non-zero, and consequently the costate variable values Z; do not
correspond directly to the adjoint states Z; = 0z/0x; for non-optimal paths.

An important advantage of the indirect approach is the reduction in the
number of independent variables, from Np to g. A number of objections may
nevertheless be made to the indirect method, and we consider these briefly here.
(i) The costate equations may be unstable in the forward direction. Of course,
this depends upon the problem dynamics: it is not the case for spacecraft tra-
jectory optimization, for example, where the dynamics is given by the inverse
square law. (ii) The formation of the adjoint state equations and the transver-
sality equations can be time consuming, and is problem dependent. The need
for explicit equation formation can be avoided by the use of AD. Of course, the
equations must still be solved for the controls and costates, but AD can again
be used to generate the necessary second derivative coeflicients. (iii) It is not in
general possible to solve the implicit costate and Pontryagin equations exactly:
once their residuals are of the same order as the residual r of the transversality
equation, no further progress can be made using the calculated Newton step for
the initial costate. We shall see following Proposition 2 below how the indirect
algorithm can be modified so as to take account of small non-zero residuals.
Consequently, Newton’s method remains viable in the end-game for the indirect
formulation. (iv) The costate variables do not have a physical meaning, and so
it can be hard to make good initial estimates of Zy. At the optimum, the costate
variable value % is equal to the value of the adjoint state Zo: both represent the
sensitivity of the optimal value of the target function z to a small perturbation

of the initial state zg for fixed control values. In many cases, prior experience
with problems of the same general type provides insight into appropriate ini-
tial values. Alternatively an adjoint-control transformation [9] can be used to
replace guesses for the initial costate by guesses for the initial controls ug and
certain of their time-derivatives . Finally, this objection loses much of its force
in the context of rigorous global optimization, where the objective is to search
the entire independent variable space.

3 The Direct Algorithm

Given a starting position u; and arbitrary values b; for 0 < ¢ < N, the following
algorithm obtains values for ¢; such that t -V, u = b, ie

Z auzauj

N-1

tj:bi for 0 <i < N.

Algorithm 1

Step 1. For i from 1 up to N calculate z; by ;11 = fi(zi,u;) where zg is a fixed
constant. Set z = F(xn).

Step 2. Define Zy,an € RY; Dy € R?7*1 by
CEN:FI(CEN); DN:F”(.TN); an = 0.

Step 3. For i from N — 1 down to 0 calculate Z;,a; € RY;4;,¢c; € RP; A;,D; €
R B; € RP*%;(C; € RP*P by

z; = [f;,i]Tﬂ_fiH; u; = [} Tﬁ_fiﬂ
A = [f ,z]T Z+1 f ,z] mlJrl T[alL'Iw,i]
B = [u +1 f ,7.] xl+1 T I:lele,z]

A D |
Ci = 1] Diss [£1] + i) [f1]
at (zi,u)

where [.] denotes evaluation

([Fod)" Disa [£2,]) for ZZ{ Tiri)] (Dis1)im {%} etc.

ok m=1

t (a:z,uz , and we write (for example)

If C; is singular then the algorithm fails, otherwise set

D;=A; - Bl'Cc;'B;

¢ = [leL,i]Ta'i-i-l — bi; a; = [f;:c,i]Ta’i-l-l - B/ C;t

Step 4. For ¢ from 0 up to V — 1 calculate t; € RP,s;11 € R? by
ti = —C; ' (Bis; + ¢;); Siv1 = [foi] si+ [fui] ti
where sg is the fixed constant 0.

STOP

Notation.

Let H be the block matrix with (i,)-th block given by
ou; :|

H;; = |—
! L%j
For given values of t;,b; € RP : 0 <i < N we write Ht = b to denote

N-1
ZHijtj:bi for 0 <i < N.
=0

Proposition 1

Either Algorithm 1 fails because some Cj is singular, or else it terminates with #;
which satisfy Ht = b. Consequently if all the C; defined in Step 3 of Algorithm
1 are invertible, then so is H.

If all the C; are positive definite, then so is H. Conversely, if H is positive
definite then all the C; are positive definite (and hence are invertible). In this
case all eigenvalues of every C; are bounded below by the smallest eigenvalue Ag
of H. O

The assertion that positive definiteness for all the C; implies the same prop-
erty for H was proved by Pantoja [15]. The converse property was first proved
much later by Coleman and Liao [7]. It follows that we can establish whether
or not H is positive definite at a point of interest by running the algorithm and
checking the N p x p matrices C; for positive definiteness. The assertion about
the eigenvalues is proved in Corollary 6 of §4 below.

In the particular case where b = —a, Algorithm 1 is equivalent to the fol-
lowing modified form: in Step 1 replace the definition of ax by ay = Zy; in
Step 2 simplify the calculation for ¢; to ¢; = | fl’m]TaiH. Actually this modified
algorithm just calculates y; = &; + a; in place of a;, since if b; = —u; then y;
and c¢; satisfy the recurrence relations:

ci = [fﬁ,i]TyiH; Yi = [fale,i]TyiJrl - Bl C; e

This modified form is the original algorithm given by Pantoja in [15]. Clearly
in this case t is the Newton direction. The generalization to an arbitrary right

hand side b given by Coleman and Liao [op cit] applies the original algorithm to
a modified target function. Algorithm 1 in the form given here is more efficient
in terms of operation count: see [5] for details. The correctness of Algorithm 1
follows from the material set out in the next section.

Near a second-order minimum, it follows by Proposition 1 that all the C;
are invertible, so this algorithm will successfully produce the Newton direction
in the end-game. Further, we can verify that we are at a minimum by checking
for each ¢ that u; = 0 and that C; is positive definite. This result is often useful
even if we did not use Newton to find the optimal point.

The account given thus far assumes that all control variables are active. The
value of u will indicate when a bound control value should be released, and in
the meantime rows and columns corresponding to bound control variables can
simply be deleted. If the whole of u; is bound then D; = A;.

It is also assumed that state-space constraints have been incorporated into
the target variable by the use of barrier or penalty methods. A vast literature
exists on the incorporation of constraints into Newton’s method. The fact that
Pantoja’s algorithm, in contrast with other methods such as DDP [11, 13], pro-
duces the exact Newton step and not an approximation to it, even far from the
optimum, means that we can use all the available theory and tools directly. See
[16] for a particularly interesting approach in the context of Pantoja’s algorithm.

In case one of the C; fails to be positive definite in Algorithm 1, indicating
that the Hessian H fails to be positive definite, then we can modify the calcula-
tion to ensure termination of the algorithm and generation of a descent direction,
by changing the recurrence relation for C; to

Ci = [fﬁ,i]TDiH [fui] + (Zip1)" [fiu,i] + Ai

where A; is a symmetric p X p matrix chosen such that C; + A; is positive definite.

However, if some C} is not positive definite then it is probably more effective
in practice to deploy an alternative strategy rather than damping. A (conceptual)
description of one such strategy follows: Rotate u; in RP so that the coordinate
directions are eigenvectors of C;. In calculating the Newton step using Algorithm
1, treat as inactive (bound) those components of u; corresponding to non-positive
eigenvalues (ie those less than some positive threshold Ag). For each significantly
negative eigenvalue (less than —X\g), a corresponding concave control regime u;
for i < j < N can be constructed using Corollary 6 below, and a control update
Au can then be formed by combining these regimes (or a descent regime in
the case of eigenvalues close to zero) together with the Newton direction, using
techniques such as those suggested in [6, §4].

Implementation using Automatic Differentiation
Algorithm 1 requires accurate (truncation-free) second derivative values, because

these values occur in the recurrence relations which generate the linear equations
to be solved at each time stage. Using Automatic Differentiation [10], existing

code to calculate the target function z does not require extensive (and error-
prone) manual re-writing in order to evaluate these derivatives.

The forward accumulation technique of AD associates with each program
variable v a vector ¥, which contains numerical values for the partial derivatives
of v with respect to each of the r independent variables. The combined structure
V = (v,0) is called a doublet.

In the reverse accumulation technique of AD, a floating point adjoint variable
o (initially zero) is associated with each program variable v. The adjoint variables
¥ are updated, in the reverse order to the forward computation, so that at each
stage they contain the numerical value of the partial derivative of the dependent
variable with respect to the value which was contained in v at the corresponding
point in the forward computation.

The forward and reverse techniques can be combined to calculate Hessians.
We embed doublet arithmetic into an implementation of reverse AD: each pro-
gram variable value is a doublet rather than a real, and so is each correspond-
ing adjoint variable value. After initializing [i] we calculate Y = f(U) giving
y = [f'(w)]i. We then initialize Y = (7,7) and perform the reverse pass in
doublet arithmetic, following which we have

[@ = [f']"y and (@] =77 [f" (Wi + [f'(w)]"g
The values required by Pantoja’s algorithm can be evaluated by choosing suitable
initial values for @ and Y": for details see [5, 3].
Checkpointing can be used to reduce the total storage requirement for Algo-

rithm 1 to the order of 4p floating point stores per time step. Details of this and
of the corresponding time and space bounds are reported in [5].

4 Technical Lemmata

In this section we establish a number of technical constructions and results,
within the framework of Algorithm 1. For expository purposes, this section is
set out in the form of an elementary direct proof of Proposition 1. However
our ulterior purpose is to develop a toolkit which can be used to fabricate and
analyse the properties of variant algorithms, including the indirect reformulation
of Pantoja’s algorithm in the following section. The result in Corollary 6 is new,
and is needed to justify some of the constructions proposed in [6].

Notation

Given values of t; : 0 < ¢ < N define the directional derivative
9 N—1

_ _ 0
Ezt-vu_th "

=0

o ox; - 0Z%; 7— ou;
ST | T e | YT e |

Note that = Ht, ie given values for ¢; : 0 < i < N we have t; = E;V;()l Hijt;.

Set

Lemma 1
The t;, s;, 55, t; satisfy the following recurrence relations:
— _ ! ! .
so=0; siy1 = [fai] si+ [fuiti for0<i<N

5n = [F"(zN)]sn

si= 0] s+ @) " [fl] si+ @) [fr]t for0<i<N

t; = [f;,z]T Sit1 + (.fi+1)T [f;lw’z] s; + (.fi+1)T [f;lu’z] t; for 0 <i< N

where we write (for example)

((i‘i+1)T I:f;’u,i] ti)j for zq:zp: (Zit1)y [%} (t;); etc.

k=1 1=1

Proof: Apply the differential operator /0t to the equations z;+1 = fi(z;,u;);
oy = F'(an); @ = [fy)] T and @i = (£)] i1 O

Lemma 2

Fix i :1 <4 < N. Suppose that Algorithm 1 has been successfully carried out
as far as the inversion of C; in Step 3. Suppose that we are given an arbitrary
value for s;. Pick

t; = —C’JTlB]-sj for j from ¢ up to V — 1.

Then t; =0fori < j < N and 5, = Djs; fori < j < N.

Proof: In case i = N there are no values for ¢; to be considered, and the last
assertion is trivially satisfied since Dy = F"(zn). Fori < N assume as induction
hypothesis that the required assertions are true for i + 1. Set an arbitrary value
for t;. Then s;41 = [f;z] si + [7’“] t;. By the induction hypothesis we can
construct, for this s;y;, values of ¢; : j > i such that ¢t; = 0 for j > 4, and
for this choice of ¢; we have 5,41 = D;115;41. Hence expanding the recurrence

relations for #; and 5; in Lemma 1 we have

§i = Aisi + Bl t; ti = Bisi + Cit;.

We are assuming that Cj is non-singular, so setting t; = —C;~ 1 B;s; will ensure
that ¢; = 0, and since D; = A; —B?C{lBi this choice of ¢; gives s5; = D;s; which
establishes the induction step. O

Lemma 3

Fix ¢:1 <7 < N, and suppose that we are given values b; : ¢ < j < N. Suppose
that Algorithm 1 has been successfully carried out as far as the inversion of C;
in Step 3. Suppose that we are given an arbitrary value for s;. Pick

t; :—CJ-_I(Bjsj+cj) for j from ¢ up to N — 1
Then ¢; =b; for i <j < N and §; = D;s; +a; for i < j < N.

Proof: In case i = N there are no values for b; to be considered, and ay = 0 so
the last assertion is trivially satisfied by Lemma 1. For i < N assume as induction
hypothesis that the required assertions are true for i + 1. Set an arbitrary value
for t; and let the values for ¢; : j > i be constructed from the resulting value of
s;+1 by the induction hypothesis. Since §;4+1 = D;y15:41 + a;+1 by hypothesis,
the recurrence relations in Lemma 1 expand to give

T T
5= Aisi + Bl ti + [f,,] aim; ti=Bisi+ Citi + [fi;] ain
We are assuming that C; is non-singular, so setting t; = —C; !(B;s; +¢;) will

ensure that t; = b;, and this choice of ¢; gives 5; = D;s; + a; which establishes
the induction step. O

Putting ¢ = 0 in Lemma 3 gives the first part of Proposition 1. Since b is
arbitrary and the C; do not depend on the choice of b; it follows that H is
invertible if all the C; are, although the converse may fail.

Lemma 4

If all the matrices C; are positive definite, then so is H.

Proof: Choose arbitrary ¢; for all 0 < j < N and set

q(t) = t] Hjpty = Z t

It is required to show that ¢(t) > 0 provided ¢; # 0 for some j. Let i be the least
index with t; # 0, so ¢t; =0 for j <.

Define ¢ by ¢7 = 0 for j < i, t7 = t;, and for j > i choose ¢7 by Lemma
280t : j > i are chosen by Lemma 2 so as to make t7 = 0 for j > i. Define
t; =t; —t7 for 0 < j < N. Note that ¢; =0 for j <. Now

N—1N-1 N—-1N-1 N—-1N-1
t;Tijt;; + 2 Z Z t;Tijtz + Z Z t?Tijtz
7=0 k=0 7=0 k=0 7=0 k=0

10

=q(t)+2D T+ Y 51 =q(t") +t] - F = q(t*) + t] Cit;

since t¢ = C;t? by Lemma 2 and t¢ = t; # 0. Now C; is positive definite whence
q(t) > q(t*). If t* = 0 then ¢(t*) = 0, otherwise since t; = 0 for j < i by
construction, applying the argument recursively to t* gives ¢(¢t*) > 0. Hence
q(t) > 0 in any case. a

Lemma 5

Suppose that H is positive definite. Then so are all the C;.

Proof: Set t; = 0 for j < ¢ and pick an arbitrary ¢; # 0. If ¢ < N — 1 then
suppose by induction that C; is positive definite for all 7 > ¢, and use Lemma 2
applied to i + 1 to construct ¢; : j > i so that ¢; = 0 for j > i.

Since H is positive definite we have that ¢(t) > 0 where

N—-1
S tfH ktk—Zt it =tlCit;
k=0

-1

N
=0

since s; = 0 so t; = C;t;. Since t; is arbitrary we have that C; is positive definite.
]

Corollary 6

Suppose that H is positive definite, with smallest eigenvalue Ag > 0, choose
arbitrary ¢ and let \; be any eigenvalue of C;. Then A; > Ag.

Proof: We have A; > 0 by Lemma 5. Let ¢; be any non-zero eigenvector of C;
with eigenvalue \;. Use this ¢; in Lemma 5 to construct ¢; such that ¢; = 0 for
j<iandt; =0for j >i. Then

N—1N-1
Xolltill* < Ao Z 14117 < Y- >t Hwt = q(t) =] Cits = Xi|tal)?
7=0 k=0
whence \g < ;. O

5 The Indirect Algorithm

In the direct formulation we begin with a trial value for the control values u; at
each timestep. In the indirect formulation, in contrast, we begin with a trial value
for the initial costate £o and use the implicit costate and Pontryagin equations to
calculate the controls u; and successor costates Z;41 for each timestep 0 < i < V.

11

We seek the Newton direction ag for the initial costate which will force the
linearized transversality condition r + ag - Or/0%Zo = 0 to hold, ie ay such that

0
IN — FI(Z‘N) + ag - 6_550 (i‘N —F’(I‘N)) =0.

The following modified formulation of Pantoja’s algorithm obtains this required
value for ag.

Algorithm 2

Step 1. Given the fixed initial value for zg, set a trial initial value for . For
i from 0 up to N — 1 calculate u; € RP;%;11,x;41 € R? by solving the implicit
costate and Pontryagin equations, respectively

T — [f;,i]Ti“iH = 0; Ui = [fh

for u; and Z;4; and setting x, 11 = fi(z;, u;).

]Ti“iﬂ =0,

Step 2. Set z = F(zn), and define ay € R?, Dy € R?*Y by
Dy = F"(xn); ay = —r where r = Ix — F'(zn).

Step 8. For i from N — 1 down to O calculate a; € R?; A;,D; € R?*?;B; €

RP*9;C; € RP*P by
A= [f1a)" Disa [f2] + @) [f]

)

I
T,

Bi = [f1.]" Dipa [£2] + @ip)" [Fil]
Ci = [uz] +1 [
)

f z] mH’l T[IIL’u 7.]
where [.] denotes evaluation at (a:z,uz , and we write (for example)

If C; is singular then the algorithm fails, otherwise set
D,=A, - Bl'c;'B;
T T
ai = [f;,z] Git1 — BTC [fu z] Qit1

STOP

Proposition 2

Either Algorithm 2 fails to terminate, or else at the end ag satisfies

0
IN — FI(.TN) + ap - EEN (Tn — F’(CUN)) =0.
0

12

Proof: Let a € R? be an arbitrary direction and for 0 < ¢ < NN define the
directional derivative 5 5

%:a-a—io

b= 8Ul L 8:62 = 6:&1
T 1ea]” T 9]’ T |8a]”
Modify Algorithm 2 to initialize ay = 90r/0a. We show by reverse induction

that for 0 < i < N we have §; = D;s; + a;. The case i = N is trivial since by
the choice of ay
or 0

ay = 5= 5 (En = F'(zn)) = 8x — F'(zn)sn = 8x — Dnsn.

Set

Now assume case i + 1. Differentiating the state equation with respect to a gives
siy1 = [f1 Z] si+ | fl’“] t;. Differentiating the Pontryagin equation with respect

to a and substituting Si+1 = Diy18i41 + aiy1 gives

B;s; + C’iTti + [leL]TaiH =0, whence t; = —Ci_l (B;fsi + [f;7i]Tai+1) .

Differentiating the costate equation and substituting now gives
- T
§i=Aisi + Bl t; + [fi;] aiy1 = Disi +a;

as required for the induction step. The case i = 0 gives a = 0%y/0a = §p =
Dgsg + ag = ag since sg = 0. This holds for any value of a € R?. In particular,
if Or/0a = 0 then a = 0, thus the operator which maps a to dr/da is rank-

preserving and hence is onto. It follows that 0r/0a = —r for some value of a,
and this value is the required Newton step. Consequently if we initialize ay = —r
in Algorithm 2 then ag is the Newton direction as asserted. O

As for Algorithm 1, in the region of an optimum path we have that all the
C; are positive definite.

Self-Stabilization

In Algorithm 2 we are solving implicit equations for the controls and costate at
each timestep, and these equations may have small but non-zero residuals for
the accepted solutions. Close to a solution, when the transversality residual r
also becomes small, the non-zero residuals for the implicit control and costate
equations may have a significant impact upon the effectiveness of the calculated
Newton step in reducing the transversality residual. It is straightforward to gen-
eralize Algorithm 2 so as to compensate to first order for the effect of these
residuals in the calculation of the Newton direction.
Suppose the implicit equations actually solved in Step 1 of Algorithm 2 are:
T — [fi,i]Ti“iH =73 [fL,i]TﬁEiJrl = —bi.

13

Modify Step 3 of Algorithm 2 to compute:

Ci = [f:“

To see that this modification has the desired effect, observe that setting Zo + ag
in place of Zy, linearizing the state equations, and solving the (linearized) costate
and Pontryagin implicit equations exactly now gives zn and Zn with F'(zn) =
Zn exactly for quadratic F'.

Indeed, we can go further and incorporate the first-order effects of non-zero
residuals dz; in the state equations, by perturbing a; by D;dz;. Such residuals
might arise because the state equation is given in implicit form, or because a
multigrid method is being used resulting in a number of different discretizations.
A solution which is exact with respect to one discretization may have non-trivial
residuals with respect to another.

Once again, the account given here does not consider control or state con-
straints. Where the Pontryagin equations have no interior solutions for «; we may
bind the relevant controls to an extreme value as discussed following Proposition
1 above. More general state and interior control constraints can be incorporated
into the indirect formulation using the penalty approach of [1].

T T —
] Ai4+1 — bi; a; = [flﬂ»] Qi1 — T3 — BZTCZ 1Ci.

x

6 Discussion

AD can be used to implement Algorithm 2, in the same way as for Algorithm
1. AD can also be used to calculate derivative values for rapid iterative solution
of the implicit equations at each time step.

Of course, in the indirect formulation, these byproducts of AD could instead
be used to differentiate forward [2] or backward [4] through the implicit equations
to obtain explicitly the Jacobian of the transversality condition, and hence to
determine the Newton step, without any reference to a Pantoja-like construction.

However, Algorithm 2 possesses certain additional advantages. (i) Algorithm
2 can be made self-stabilizing. (ii) Algorithm 2 permits good estimates to be
made for new trial controls u; and costates #;y; prior to implicit equation so-
lution at each timestep of the new solution point: du; = —C{l(Bi(Sa:i + ¢i),
0%iy1 = Diy10x;41. (ili) Algorithm 2 allows inexpensive post-hoc verification
that a second-order minimum has indeed been reached.

The alternative formulations of Pantoja’s algorithm set out in this paper
also provide a unified framework for consideration of hybrid direct-indirect ap-
proaches to discrete time optimal control, and this is identified as a promising
area for future research.

For example, a composite of Algorithms 1 and 2 allows simple determination
of whether the Hessian of z is positive definite with respect to the controls u; for
any given trial path, and also allows damping to be applied to the Newton step
for the initial costate if not. This means that the outer optimization process
can be started by choosing a control regime, perhaps through an interactive
simulation, and then a self-stabilizing step can be used to modify the initial
adjoint state values into sensible trial values for the initial costates.

14

A similar approach can be taken to post-hoc verification of the smallest
eigenvalue of H and hence of the inclusions required for fixed point interval
constructions. The number ¢ of independent variables in Algorithm 2 is small
compared to the number Np of independent variables in Algorithm 1, which
makes the indirect form of Pantoja’s algorithm suitable as a basis for verified
optimization using interval methods. This is also identified as a challenge for
future development.

A final challenge for the future is the incorporation of third and higher order
derivative information into solution strategies for optimal control problems, for
example allowing curvilinear searches in the style of Conforti and Mancini [8].
This is likely to be of particular importance when state constraints are handled
by penalty or barrier methods.

Dedication

At various different times, and amongst many other things, Laurence Dixon has
been responsible for introducing me to Automatic Differentiation, to the indirect
approach to Optimal Control, and to Pantoja’s original algorithm. This paper
is dedicated to him, with thanks, for his many years of quiet discernment.

References

1. Michael Bartholomew-Biggs, 1995, A Penalty Method for Point and Path State
Constraints in Trajectory Optimization, Optimal Control Applications and Meth-
ods, 16, 291-297.

2. Michael Bartholomew-Biggs, 1998, Automatic Differentiation of Implicit Func-
tions using Forward Accumulation, Computational Optimization and Applica-
tions, 9, 65—84.

3. Michael Bartholomew-Biggs, Steven Brown, Bruce Christianson and Laurence
Dixon, 2000, Automatic Differentiation of Algorithms, Journal of Computational
and Applied Mathematics, 124, 171-190.

4. Bruce Christianson, 1998, Reverse Accumulation and Implicit Functions, Opti-
mization Methods and Software, 9, 307-322.

5. Bruce Christianson, 1999, Cheap Newton Steps for Optimal Control Problems:
Automatic Differentiation and Pantoja’s Algorithm, Optimization Methods and
Software, 10, 729-743.

6. Bruce Christianson and Michael Bartholomew-Biggs, 2001, Globalization of Pan-
toja’s Optimal Control Algorithm, ¢n From Simulation to Optimization: 3rd In-
ternational Conference on Automatic Differentiation, Springer LNCS, to appear.

7. Thomas Coleman and Aiping Liao, 1995, An Efficient Trust Region Method for
Unconstrained Discrete-Time Optimal Control Problems, Computational Opti-
mization and Applications 4, 47-66.

8. D. Conforti and M. Mancini, 2001, A Curvilinear Search Algorithm for Uncon-
strained Optimization, Optimization Methods and Software, to appear.

9. Laurence Dixon and Michael Bartholomew-Biggs, 1981, Adjoint-Control Trans-
formations for Solving Practical Optimal Control Problems, Optimal Control
Applications and Methods, 2, 365-381.

15

10.

11.

12.

13.

14.

15.

16.

Andreas Griewank, 2000, Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation, Frontiers in Applied Mathematics 19, SIAM,
Philadelphia.

D.H. Jacobson and D.Q. Mayne, 1970, Differential Dynamic Programming, in
Modern Analytic and Computational Methods in Science and Mathematics 24,
ed. R. Bellman, American Elsevier, New York.

Harriet Kagiwada et al, 1986, Numerical Derivatives and Nonlinear Analysis,
Plenum New York.

D.M. Murray and S.J. Yakowitz, 1984, Differential Dynamic Programming and
Newton’s Method for Discrete Optimal Control Problems, JOTA 43(3), 395-414.
J.F.A.De O. Pantoja, 1983, Algorithms for Constrained Optimization Problems,
PhD thesis, Imperial College of Science and Technology, University of London.
J.F.A.De O. Pantoja, 1988, Differential Dynamic Programming and Newton’s
Method, Int J Control 47(5), 1539-1553.

J.F.A.De O. Pantoja and D.Q. Mayne, 1991, Sequential Quadratic Programming
Algorithm for Discrete Optimal Control Problems with Control Inequality Con-
straints, Int J Control 53(4), 823-836.

16

