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AbstractÐThis article explores the use of Simple Synchrony Networks (SSNs) for learning to parse English sentences drawn from a

corpus of naturally occurring text. Parsing natural language sentences requires taking a sequence of words and outputting a

hierarchical structure representing how those words fit together to form constituents. Feed-forward and Simple Recurrent Networks

have had great difficulty with this task, in part because the number of relationships required to specify a structure is too large for the

number of unit outputs they have available. SSNs have the representational power to output the necessary O�n2� possible structural

relationships because SSNs extend the O�n� incremental outputs of Simple Recurrent Networks with the O�n� entity outputs provided

by Temporal Synchrony Variable Binding. This article presents an incremental representation of constituent structures which allows

SSNs to make effective use of both these dimensions. Experiments on learning to parse naturally occurring text show that this output

format supports both effective representation and effective generalization in SSNs. To emphasize the importance of this generalization

ability, this article also proposes a short-term memory mechanism for retaining a bounded number of constituents during parsing. This

mechanism improves the O�n2� speed of the basic SSN architecture to linear time, but experiments confirm that the generalization

ability of SSN networks is maintained.

Index TermsÐConnectionist networks, natural language processing, simple synchrony networks, syntactic parsing, temporal

synchrony variable binding.

æ

1 INTRODUCTION

THIS article explores the use of Simple Synchrony
Networks (SSNs) for learning to parse English sen-

tences drawn from a corpus of naturally occurring text. The
SSN has been defined in previous work [17], [23] and is an
extension of the Simple Recurrent Network (SRN) [6], [7].
The SSN extends SRNs with Temporal Synchrony Variable
Binding (TSVB) [33], which enables the SSN to represent
structures and generalize across structural constituents.

We apply SSNs to syntactic parsing of natural
language as it provides a standard task on real world
data which requires a structured output. Parsing natural
language sentences requires taking a sequence of words
and outputting a hierarchical structure representing how
those words fit together to form constituents, such as
noun phrases and verb phrases. The state-of-the-art
techniques for tackling this task are those from statistical
language learning [2], [3], [5], [20]. The basic connectionist
approach for learning language is based around the SRN,
in which the network is trained to predict the next word
in a sentence [7], [8], [30] or else trained to assess

whether a sentence is grammatical or not [24], [25].
However, the simple SRN has not produced results
comparable with the statistical parsers because its basic
output representation is flat and unstructured.

The reason the simple SRN does not produce structured
output representations lies with the required number of
relationships which must be output to specify a structure
such as a parse tree. For the SRN, only O�n� relationships
may be output, where n is the number of words in the
sentence. However, a parse tree may specify a structural
relationship between any word and any other word,
requiring O�n2� outputs. This is not possible with the
simple SRN because the length of a sentence is unbounded,
but the number of output units is fixed. More fundamen-
tally, even if a scheme is devised for bounding the required
number of outputs to O�n� (such as the STM mechanism
discussed below), using large numbers of output units
means learning a large number of distinct mappings and
thus not generalizing across these distinctions. Thus, this
article will focus not only on the representation of syntactic
structures in the network's output, but crucially on a
demonstration that the resulting networks generalize in an
appropriate way when learning.

One example of a connectionist parser which uses
multiple groups of output units to represent the multiple
structural relationships is the Hebbian connectionist net-
work in [13]. This network explicitly enforces generalization
across structural constituents by requiring each group of
output units to be trained on a random selection of the
constituents. However, the amount of nontrainable internal
structure required to enforce this generalization and
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represent the possible forms of structure is a severe
limitation. In particular, this component of the network
would need to grow with the length and complexity of the
sentences. This network has only been tested on a toy
sublanguage and has not been demonstrated to scale up to
the requirements of naturally occurring text.

The two alternatives to increasing the number of output
units are to increase the amount of information represented
by each unit's activation level and to increase the amount of
time used to output the structure. Both these approaches are
exemplified by the Confluent Preorder Parser [18]. As with
other holistic parsers, the Confluent Preorder Parser first
encodes the sentence into a distributed representation. This
representation uses a bounded number of units, but the use
of continuous activation values allows it to, in theory,
encode a sentence of unbounded length. This distributed
representation is then decoded into a different sequence
which represents the sentence's syntactic structure (in
particular, the preorder traversal of the structure). This
output sequence is as long as it needs to be to output all the
required structural relationships, thereby avoiding the
restriction on the SRN that there can be only O�n� outputs.
But, both this decoding stage and the previous encoding
stage miss important generalizations that are manifested in
an explicitly structural representation and, thus, do not
scale well to naturally occurring text. For the decoding
stage, structural constituents which are close together in the
structure may end up being far apart in the sequential
encoding of that structure. Thus, important regularities
about the relationship between these constituents will not
be easily learned, while other regularities between consti-
tuents which just happen to occur next to each other in the
sequence will be learned.1 For the encoding stage, as
sentences get longer, the ability of a fixed sized distributed
representation to encode the entire sentence degrades.
Indeed, [18] points out that the representational capacity
of such approaches is limited, preventing their scale up
beyond toy grammars.

Our approach is to represent structural constituents
directly, rather than using one of the above indirect
encodings. Thus, our connectionist architecture must be
able to output the O�n2� structural relationships of a parse
tree. To achieve this, the SSN extends the O�n� incremental
outputs of the SRN with the O�n� entity outputs provided
by TSVB. But, it is not enough to simply provide such a
representation; the point of using a direct encoding is to
enable the network to learn the regularities that motivated
the use of a structured representation in the first place.2 For
the SSN, the use of TSVB means that learned regularities
inherently generalize over structural constituents [15], [17],
thereby capturing important linguistic properties such as
systematicity [15]. It is this generalization ability which

allows the SSN parser presented in this article to scale up to
naturally occurring text.

In this article, we demonstrate how the SSN can represent
the structured outputs necessary for natural language
parsing in a way that allows the SSN to learn to parse from
a corpus of real natural language text. To emphasize the
generalization ability required to learn this task, we also
introduce an extension to the SSN, namely, a short-term
memory (STM) mechanism, which places a bound on the
number of words which can be involved in any further
structural relationships at any given time. This improves the
O�n2� speed of the basic SSN architecture to linear time
(O�n�), but it also means that only O�n� relationships can be
output. However, unlike previous connectionist approaches
to parsing, this bound does not affect the ability of SSNs to
generalize across this bounded dimension and, thus, to
generalize in a linguistically appropriate way. Indeed, the
performance of the SSN parser actually improves with the
addition of the STM.

2 SIMPLE SYNCHRONY NETWORKS

In this section, we provide a summary of Simple Synchrony
Networks (SSNs) [17], [23]. We begin by describing the
basic principles of Temporal Synchrony Variable Binding
(TSVB) [33] which extend standard connectionist networks
with pulsing units; pulsing units enable a network to
provide output for each entity (word) encountered and not
just for the current one, as with the standard connectionist
unit. We briefly summarize the main equations defining the
operation of TSVB networks and describe a training
algorithm. Finally, we give three example SSN architec-
tures; SSNs are defined by a restriction on the space of
possible TSVB networks.

2.1 Trainable TSVB Networks

TSVB [33] is a connectionist technique for solving the
ªbinding problemº through the use of synchrony of
activation pulses. The binding problem arises where
multiple entities are represented each with multiple
properties; some mechanism is required to indicate which
properties are bound to which entities. For example, on
seeing two objects with the properties red, green, square,
and triangle, some mechanism is needed to indicate
which color relates to which shape. One method is to
provide for variables x and y to stand for the two objects.
The scene may then be unambiguously described as:
red�x� ^ green�y� ^ square�x� ^ triangle�y�. Another me-
chanism is to use synchrony binding, in which two units
are representing properties bound to the same entity
when they are pulsing synchronously. This proposal was
originally made on biological grounds by Malsburg [36].
Earlier implementations of TSVB [14], [33] used nondif-
ferentiable binary threshold units, and so could not be
trained using standard connectionist techniques. In this
section, we describe a different implementation of TSVB,
one based on standard sigmoid activation units, which
yields a trainable implementation of TSVB networks.

In order to implement a TSVB network, the central idea
is to divide each time period into a number of phases; each
phase will be associated with a unique entity. This
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1. Methods, such as Long Short-Term Memory [19], can help learn
regularities between distant items in a sequence, but they cannot totally
overcome this unhelpful bias.

2. Note that this argument applies to any domain where structured
representations have been found to be useful to express important
regularities. Thus, although this article focuses on the requirements of
parsing natural language, the SSN architecture would be relevant to any
task which is best thought of as a mapping from a sequence of inputs to a
structure.



correspondence of phases and entities means phases are
analogous to variables; all units active in the same phase are
representing information about the same entity, just as if the
units were predicates on the same variable. Through the
analogy with variables, the phase numbers play no role in
determining unit activations within the network. There are
two kinds of unit. The first is the pulsing unit, which
computes in individual phases independent of other
phases. The number of phases in each time period, n�t�,
may vary, and so the pulsing unit's output activation is an
n�t�-place vector, i.e., the activation, ~oj�t�, of a pulsing unit j
at time t is formed from n�t� values, fopj �t� j 1 � p � n�t�g,
where opj �t� is the activation of unit j in phase p at time t.
The second type of unit is the nonpulsing unit, which
computes across all phases equally in the current time
period; its output activation, oj�t�, at time t is constant
across every phase in time t.

We define the net input and output activation separately
for each type of unit within a TSVB network based on the
type of unit it is receiving activation from. We index the
pulsing units in the network by a set of integers U� and the
nonpulsing units by a set of integers U� . Each noninput unit,
j, receives activation from other units indexed by the set
Inputsj. Recurrent links are handled, without loss of
generality, by adding context units to the network; each
context unit's activation value is that which another unit
had during the previous time step. The function, C, maps
each unit to its associated context unit. Units are linked by
real-valued weights: the link from unit i to unit j having the
weight wji.

Given these definitions, the output activation of a
pulsing unit, j 2 U�, in phase p at time t is defined as
follows:

netpj �t� �
X

i2Inputsj

wjiR
p�i; t�

where Rp�i; t� � oi�t� if i 2 U�
opi �t� if i 2 U�

�

opj �t� �

inpj �t� if j is an input unit

opi �tÿ 1� if 9i:j � C�i� ^ t > 1

0 if 9i:j � C�i� ^ t � 1

��netpj �t�� otherwise:

8>>><>>>:
With the standard sigmoid function: ��x� � 1=�1� eÿx�.
Note that the net function for each phase p takes activation
from other pulsing units only in phase p, or from
nonpulsing units, whose activation is the same across all
phases. This is achieved by the function Rp�i; t� which
represents the activation of unit i in phase p at time t:
nonpulsing units �i 2 U� � have constant activation across
each time period, so their activation is oi�t�; pulsing units
�i 2 U�� output a separate activation for each phase of the
time period, so their activation is opi �t�.

The definition of the output activation of a nonpulsing
unit is complicated by the possibility of a nonpulsing unit
having inputs from pulsing units. In this case, activations
from an unbounded number of phases would have to be
combined into a single input value. As discussed in [22],
including such links is not necessary and decreases the
effectiveness of the architecture. Thus, they are not allowed

in Simple Synchrony Networks. Given this simplification,
the output activation of a nonpulsing unit, j 2 U� , at time t
is defined as:

netj�t� �
X

i2Inputsj

wjioi�t�

oj�t� �

inj�t� if j is an input unit

oi�tÿ 1� if 9i:j � C�i� ^ t > 1

0 if 9i:j � C�i� ^ t � 1

��netj�t�� otherwise:

8>>><>>>:
Note that these nonpulsing units act just like a standard
unit within an SRN.

In order to train these TSVB networks, we use a novel
extension of Backpropagation Through Time (BPTT) [31].
When applying BPTT to a standard recurrent network, one
copy of the network is made for each time step in the input
sequence. Extending BPTT to TSVB networks requires a
further copy of the network for every phase in the time
period. The unfolding procedure copies both pulsing and
nonpulsing units once per time period, and the pulsing
units are copied additionally once per phase. As with
standard BPTT, the unfolded network is a feed-forward
network and can be trained using backpropagation. How-
ever, the unfolded network is a set of copies of the original
and so, as training progresses, the changing weights must
be constrained to ensure that each copy of a link uses the
same weight; this is achieved by summing all the individual
changes to each copy of the link.

2.2 SSN Architectures

Three example SSN architectures are illustrated in Fig. 1.
Fig. 1 depicts layers of units as rectangles or blocks, each
layer containing however many units the system designer
chooses. Rectangles denote layers of nonpulsing units and
blocks denote layers of pulsing units. Links between the
layers (solid lines) indicate that every unit in the source
layer is connected to every unit in the target layer. As
discussed above, recurrence is implemented with context
units, just as with SRNs [7] and the dotted lines indicate that
activation from each unit in the source layer is copied to a
corresponding context unit in the target layer.

All three architectures possess a layer of pulsing input
units and a separate layer of nonpulsing input units. The
procedure for inputting information to the SSNs is only a
little different to that in standard connectionist networks.
Consider a sequence of inputs ªa b c . . . º. A different
pattern of activation is defined for each different input
symbol, for example, activating one input unit to represent
that symbol and having the rest of the input units inactive
(i.e., a localist representation). With an SRN, the sequence of
input patterns would be presented to the network in
consecutive time periods. Thus, in time period 1, the SRN
would receive the pattern for symbol ªaº on its input; in
time period 2, it would receive the pattern for symbol ªbº
on its input, etc. With the SSNs, the nonpulsing input units
operate in just this way. The input symbol for each time
period is simply presented on the nonpulsing units. For the
pulsing units, each input symbol is introduced on a new
phase, i.e., one unused by the input sequence to that point.
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Thus, in time period 1, the SSN would receive the pattern
for symbol ªaº on its pulsing inputs in phase 1; in time
period 2, the pattern for the symbol ªbº would be presented
on its pulsing inputs in phase 2; and so on.

The three architectures illustrated in Fig. 1 cover three
different options for combining the information from the
nonpulsing inputs with the information from the pulsing
inputs. Essentially, the nonpulsing units contain informa-
tion relevant to the sentence as a whole and the pulsing
units information relevant to specific constituents. This
information can be combined in three possible ways: before
the recurrence (type A), after (type B), and both (type C).
Given the constraint discussed in Section 2.1 that SSNs do
not have links from pulsing to nonpulsing units, these three
types partition the possible architectures. The combination
layer in types B and C between the recurrent layers and the
output layer is optional. We empirically compare the three
illustrated architectures in the experiments in Section 4.

3 SYNTACTIC PARSING

Syntactic parsing of natural language has been the center of
a great deal of research because of its theoretical, cognitive,
and practical importance. For our purposes, it provides a
standard task on real world data which requires a
structured output. A syntactic parser takes the words of a
sentence and produces a hierarchical structure representing
how those words fit together to form the constituents of that
sentence. In this section, we discuss how this structure can
be represented in a SSN and some of the implications of this
representation.

3.1 Statistical Parsers

Traditionally, syntactic parsing was addressed by devising
algorithms for enforcing syntactic grammars, which define
what is and isn't a possible constituent structure for a
sentence. More recent work has focused on how to
incorporate probabilities into these grammars [2], [20] and
how to estimate these probabilities from a corpus of
naturally occurring text. The output structure is taken to
be the structure with the highest probability according to
the estimates. For example, probabilistic context-free gram-
mars (PCFGs) [20] are context-free grammars with prob-
abilities associated with each of the rewrite rules. The
probability of an entire structure is the multiplication of the
probabilities of all the rewrite rules used to derive that

structure. This is a straightforward translation of context-
free grammars into the statistical paradigm. The rule
probabilities can be simply multiplied because they are
assumed to be independent, just as the context-free
assumption means the rules can be applied independently.
Work in statistical parsing focuses on finding good
independence assumptions, and it often takes as its starting
point linguistic claims about the basic building blocks of a
syntactic grammar.

Our SSN parser can be considered a statistical parser, in
that the network itself is a form of statistical model.
However, there are some clear differences. First, there is
no ªgrammarº in the traditional sense. All the network's
grammatical information is held implicitly in its pattern of
link weights. More fundamentally, there are fewer inde-
pendence assumptions. The network decides for itself what
information to pay attention to and what to ignore.
Statistical issues, such as combining multiple estimators or
smoothing for sparse data, are handled by the network
training.

But, as is usually the case with one-size-fits-all machine
learning techniques, more domain knowledge has gone into
the design of the SSN parser than is at first apparent. In
particular, while very general, the input/output representa-
tion has been designed to make linguistic generalizations
easy for the network to extract. For example, the SSN
incrementally processes one word at a time and the output
required at each time is related to that word. This not only
reflects the incremental nature of human language proces-
sing, it also biases the network toward learning word-
specific generalizations. The word-specific nature of lin-
guistic generalizations is manifested in the current popu-
larity of lexicalized grammar representations, as in [5]. Also,
the short-term memory mechanism discussed later in this
section is motivated by psycholinguistic phenomena. Other
particular motivations will be discussed as they arise.

3.2 Structured Output Representations for SSNs

The syntactic structure of a natural language sentence is a
hierarchical structure representing how the sentence's
words fit together to form constituents, such as noun
phrases and relative clauses. This structure is often
specified in the form of a tree, with the constituents as
nodes of the tree and parent-child relationships represent-
ing the hierarchy; all the words that are included in a child
constituent are also included in its parent constituent. Thus,
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we can output a syntactic structure by outputting the set of
constituents and the set of parent-child relationships
between them and between them and the words.

The difficulty with outputting such a structure arises
because of the number of parent-child relationships. On
linguistic grounds, it is safe to assume that the number of
constituents is linear in the number of words.3 Thus, we can
introduce a bounded number of entities with each word
and have one entity for each constituent.4 The problem is
that this still leaves O�n2� (quadratic) possible parent-child
relationships between these O�n� (linear) constituents. The
solution is to make full use of both the O�n� times at which
words are presented to the network and the O�n� entities at
any given time. Thus, we cannot wait until all the words
have been input and then output the entire structure, as is
done with a symbolic parser. Instead, we must incremen-
tally output pieces of the structure such that by the time the
whole sentence has been input, the whole structure has
been output.

The first aspect of this solution is that new constituents
are introduced to the SSN with each word that is input. In
other words, during each period new phases (i.e., entities)
must be added to the set of phases that are being processed.
As illustrated in Fig. 1, SSNs have two banks of input units,
pulsing and nonpulsing. The nonpulsing input units hold
the part of speech tag for the word being input during the
current period. (For simplicity, we do not use the words
themselves.) Using the pulsing input units, this word-tag is
also input to the new phase(s) introduced in the current
period. In this way, the number of constituents represented
by the network grows linearly with the number of words
that have been input to it. For the experiments discussed
below, we make a slightly stronger assumption (for reasons
detailed below), namely, that only one constituent is added
with each word-tag. This means that the network can only
output parse trees which contain at most as many
constituents as there are words in the sentence. This
simplification requires some adjustments to be made to
any preparsed corpus of naturally occurring text, but is not
linguistically unmotivated; the result is equivalent to a form
of dependency grammar [27] and such grammars have a
long linguistic tradition. We will return to the adjustments
required to the training set when considering the corpus
used in the experiments in Section 4.

Now that we have O�n� constituents, we need to ensure
that enough information about the structure is output
during each period so that the entire structure has been
specified by the end of the sentence. For this, we need to
make use of the pulsing output units illustrated in Fig. 1.
Our description of the parsing process refers to the example
in Fig. 2, which illustrates the sentence ªMary saw the game
was bad.º This sentence is represented as a sequence of
word-tags as ªNP VVD AT NN VBD JJº and the sentence
structure (S) contains separate constituents for the subject
noun (N) and object clause (F), which contains a further

noun phrase (N). Note that this parse tree has had some
constituents conflated to comply with the constraint that
there be only one constituent per word; its relation to
standard parse-tree representations is covered in Section 4.

The pulsing units in the network, during the nth time
period, provide an output for each of the n constituents
represented by the SSN at that period. As mentioned above,
we obviously want these outputs to relate to the nth word-
tag, which is being input during that period. So, one thing
we want to output at this time is the parent of that word-tag
within the constituent structure. Thus, we simply have a
parent output unit, which pulses during each period in the
phase of the constituent which is the parent of the period's
word-tag. Examples of these parent relationships are shown
in Fig. 2, and examples of these outputs are shown in
Table 1. For the experiments discussed below, we assume
that each constituent is identified by the first word-tag
which attaches to it in this way. So, if this is the first word-
tag to attach to a given constituent, then its parent is the
constituent introduced with that word-tag, as for the NP,
AT, VVD, and VBD in the example. Otherwise, the word-
tag's parent is the constituent introduced with its leftmost
sibling word, as for the NN and JJ in the example. In these
cases, the newly introduced constituent simply does not
play any role in the constituent structure.

The parent output unit is enough to specify all parent-
child relationships between constituents and word-tags,
leaving only the parent-child relationships between con-
stituents. For these, we take a maximally incremental
approach; such a parent-child relationship needs to be
output as soon as both the constituents involved have been
introduced into the SSN. There are two such cases, when
the parent is introduced before the child and when the child
is introduced before the parent. The first case is covered by
adding a grandparent output unit. This output specifies the
grandparent constituent for the current word-tag, as
illustrated in Fig. 2 and Table 1 for the VBD. This
grandparent constituent must be the parent of the consti-
tuent which is the parent of the current word-tag. In other
words, the combination of the parent output and the
grandparent output specifies a parent-child relationship
between the word-tag's grandparent and its parent. The
second case is covered similarly by a sibling output unit.
This output specifies any constituent which shares the same
parent as the current word-tag, as illustrated in Fig. 2 and
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3. This simply means that there aren't unbounded numbers of
constituents that contain the same set of words (unbranching constituents).

4. Alternatively, we could introduce one entity with each word and have
one entity represent a bounded number of constituents. As will be
discussed below, we are assuming that the bound is 1, so these two
alternatives are equivalent.

Fig. 2. A sample parse tree. The solid lines indicate the parse tree itself,

the dotted and dashed lines the relationship between the words and

nodes.



Table 1 for the VVD and VBD. The combination of the parent
output and the sibling output specifies a parent-child
relationship between the word-tag's parent and each of its
siblings (possibly more than one). In the experiments below,
the grandparent and sibling outputs are only used during the
period in which the word-tag's parent is first introduced.

The interpretation of the outputs is best described with
reference to a detailed trace of activation on the input and
output units, as provided in Table 1 for the structure in
Fig. 2. The first two columns of the table (other than the
period numbers) show the inputs to the SSN. The first
column shows the activation presented to the bank of
pulsing input units. Each row of the column represents a
separate time period, and the column is divided into
separate phases, six being sufficient for this example. Each
cell indicates the information input to the network in the
indicated time period and phase; the word-tag appearing in
the cell indicates which of the pulsing input units is active
in that time period and phase. The second column shows
the activation presented to the bank of nonpulsing input
units. No phase information is relevant to these units, and
so the word-tag given simply indicates which of the
nonpulsing input units is active in each time period.

The third column in the table shows the activation
present on the output units. In every period, the parent (P)
output is active in the phase for the constituent which the
period's word-tag is attached to. In period 1, an NP (proper
noun) is input and this is attached to constituent number 1.
This is the constituent which was introduced in period 1
and it is specified as the word-tag's parent because no
previous word-tags have the same parent (there being no
previous word-tags in this case). The same thing happens
with the parent outputs in periods 2, 3, and 5. In period 4,
the word-tag NN (noun) is input and attached to constitu-
ent 3, which is the constituent which was introduced during
the input of AT (article) in the previous period. This
specifies that this AT and NN have the same parent,
namely, constituent 3. The same relationship is specified in
period 6 between the JJ (adverb/adjective) being input and
the preceding VBD (verb).

Given the set of constituents identified by the parent
outputs, the grandparent (G) and sibling (S) outputs specify
the structural relationships between these constituents.
Because we only specify these outputs during the periods
in which a new constituent has been identified, only
periods 2, 3, and 5 can have these outputs (period 1 has
no other constituents to specify relationships with). In
period 2, constituent 1 is specified as the sibling of the

VVD word-tag being input. Thus, since constituent 2 is
the parent of VVD, constituent 2 must also be the parent
of constituent 1. Constituent 2 does not itself have a
parent because it is the root of the tree structure. In
period 3, no siblings or grandparent are specified because
constituent 3 has no constituent children and its parent
has not yet been introduced. In period 5, the parent of
constituent 3 is specified as constituent 5 through the
sibling output, as above. Also, in period 5, the grandparent
output unit pulses in phase 2. This specifies that
constituent 2 is the grandparent of the VBD word-tag
being input in period 5. Thus, constituent 2 is the parent
of constituent 5 since constituent 5 is the parent of VBD.
Note that the use of phases to represent constituents
means that no special mechanisms are necessary to
handle this case, where one constituent (F) is embedded
within another (S).

In addition to structural relationships, natural language
syntactic structures also typically include labels on the
constituents. This is relatively straightforward for SSNs to
achieve. We use an additional set of pulsing output units,
one for each label. The network indicates the label for a
given constituent by pulsing the label's unit in phase with
the new constituent when it is introduced to the parse tree.

So far, we have described the target output for a SSN, in
which units are either pulsing or not. Being based on SRNs,
the actual unit outputs are, of course, continuous values
between 0 and 1. There are a variety of ways to interpret
these patterns of continuous values as a specification of
constituency. In the experiments discussed below, we
simply threshold them; all units with activations above 0.6
are treated as ªon.º The indicated set of structural relation-
ships is then converted to a set of constituents, which may
then be evaluated using the precision and recall measures
standard in statistical language learning; precision is the
percentage of output constituents that are correct and recall
the percentage of correct constituents that are output.

The important characteristic of SSNs for outputting
structures is that just three output units, grandparent, parent,
and sibling, are sufficient to specify all the structures
allowed by our assumptions that at most one constituent
needs to be introduced with each word.5 We call this the
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5. As mentioned above, the set of allowable structures can be expanded
either by increasing the number of entities introduced with each word or by
expanding the number of structural relationships so as to allow each entity
to represent more than one constituent. In either case, the number of
constituents still must be linear in the number of words. This constraint
could only be relaxed by allowing unbounded computation steps per word
input.

TABLE 1
The Input Information and Corresponding Grandparent/Parent/Sibling Outputs for the Sample Structure Shown in Fig. 2



GPS representation. As the SSN proceeds incrementally
through the sentence, at each word-tag, it outputs the word-
tag's parent and (if it is the parent's first word-child) all the
parent-child relationships between that parent and the
previous constituents in the sentence. By the time the SSN
reaches the last word of the sentence, its cumulative output
will specify all the parent-child relationships between all
the constituents, thus specifying the entire hierarchical
structure of the sentence's constituency.

3.3 Inherent Generalizations

In Section 2, we described the SSN, its training algorithm,
and a variety of possible SSN architectures. Because the
definition of TSVB units retains and augments the
properties of standard feed-forward and recurrent con-
nectionist networks, SSNs retain the advantages of
distributed representations and the ability to generalize
across sequences. The SSN has also been shown to
support a class of structured representation. Although
this representation in itself is important in extending the
range of domains to which connectionist networks may
be applied, the SSN's use of phases to identify structural
constituents also confers a powerful generalization ability,
specifically, the ability to generalize learned information
across structural constituents.

As an example of this kind of generalization, consider
what is required to generalize from the sentence ªJohn loves
Maryº to the sentence ªMary loves John.º In both sentences,
the network needs to output that ªJohnº and ªMaryº are
noun phrases, that the noun phrase preceding the verb is
the subject, and that the noun phrase after the verb is the
object. In order to generalize, it must learn these four things
independently of each other and yet, for any particular
sentence, it must represent the binding between each
constituent's word and its syntactic position.

The SSN achieves this generalization ability by using
temporal phases to represent these bindings, but using link
weights to represent these generalizations. Because the
same link weights are used for each phase, the information
learned in one phase will inherently be generalized to
constituents in other phases. Thus, once the network has
learned that the input ªMaryº correlates with being a noun
phrase, it will produce a noun phrase output regardless of
what other features (such as syntactic position) are bound to
the same phase. Similarly, the network will learn that a
noun phrase preceding a verb correlates with the noun
phrase being the subject of the verb, regardless of what
other features (such as the word ªMaryº) are bound to the
same phase. Then, even if the network has never seen
ªMaryº as a subject before, the application of these two
independent rules in the same phase will produce a pattern
of synchronous activation that represents that ªMaryº is the
subject. Henderson [15] has shown how this inherent ability
of TSVB networks to generalize across constituents relates
to systematicity [9].

3.4 Short-Term Memory

In learning-based systems, it is the system's ability to
generalize from training sets to testing sets that determines
its value. This implies that the real value of the SSN is in its
ability to generalize over constituents, and not its ability to

output O�n2� structural relationships. This suspicion is
confirmed when we consider some specific characteristics
of our domain, natural language sentences. It has long been
known that constraints on people's ability to process
language put a bound on constructions, such as center
embedding [4], which are the only constructions that would
actually require allowances for O�n2� structural relation-
ships. For example, ªthe rat that the cat that the dog chased
bit diedº is almost impossible to understand without pencil
and paper, but ªthe dog chased the cat that bit the rat that
diedº is easy to understand. The basic reason for this
difference is that, in the first case, all the noun phrases need
to be kept in memory so that their relationships to the later
verbs can be determined, while in the second case, each
noun phrase can be forgotten as soon as the verb following
it has been seen.

Motivated by this observation and by work showing
that, in many other domains, people can only keep a small
number of things active in memory at any one time [28], we
have added a ªshort-term memoryº (STM) mechanism to
the basic SSN architecture. This mechanism improves the
SSN's efficiency to O�n� time. The definition of the SSN so
far has stated that each word-tag input to the network will
be input into a new phase of the network. Information is
then computed for all of these phases in every subsequent
time period. However, the bound on the depth of center
embedding implies that, in any given time period, only a
relatively small number of these phases will be referred to
by later parts of the parse tree. The trick is to work out
which of the phases are going to be relevant to later
processing and only compute information for these phases.
The idea we use here is a simple one based on the idea of
the audio-loop proposed by Baddeley [1].

Instead of computing all phases in the current time
period, we instead compute only those in a STM queue.
This queue has a maximum size, which is the bound on
STM referred to above. When a new phase is introduced to
the network, this phase is added to the head of the queue.
When a phase is referred to by one of the output units, that
phase is moved to the head of the queue. This simple
mechanism means that unimportant phases, i.e., those
which are not referred to in the output, will move to the
end of the queue and be forgotten. Note that, in training, the
target outputs are used to determine which phases are
moved to the head of the queue and not the actual outputs,
thereby ensuring that the network learns only about the
relevant phases. Also, information held by the network
about word-tags and constituents are specific to phases, not
position in STM or the input word order. Therefore, items
cannot be confused during the reordering process which
occurs in the STM. Indeed, it is precisely this use of phases
for representing constituents which allows the SSN to keep
its ability to generalize over constituents and still be able to
parse in O�n� time.

4 EXPERIMENTS IN SYNTACTIC PARSING

WITH SSNs

In this section, we describe some experiments training a
range of SSNs to parse sentences drawn from a corpus of
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real natural language. The experiments demonstrate how
the SSN may be used for connectionist language learning
with structured output representations. Also, the fact that
the SSN's performance is evaluated in terms of precision
and recall of constituents means that the SSN's performance
may be directly compared with statistical parsers. We first
describe the corpus used, provide some results, and then
give some analysis of the training data.

4.1 A Natural Language Corpus

We use the SUSANNE corpus as a source of preparsed
sentences for our experiments. The SUSANNE corpus is a
subset of the Brown corpus, and is preparsed according to
the SUSANNE classification scheme described in [32]. In
order to use the SUSANNE corpus, we convert the
provided information into a format suitable for presentation
to our parser.

The SUSANNE scheme provides detailed information
about every word and symbol within the corpus. We use
the word-tags as input to the network, due to time
constraints and the limited size of the corpus. The word-
tags in SUSANNE are a detailed extension of the tags used
in the Lancaster-Leeds Treebank [12]. In our experiments,
the simpler Lancaster-Leeds scheme is used. Each word-tag
is a two or three letter sequence, e.g., ªJohnº would be
encoded ªNP,º the articles ªaº and ªtheº are encoded ªAT,º
and verbs such as ªisº are encoded ªVBZ.º Each word-tag is
input to the network by setting one bit in each of three
banks of input; each bank representing one letter position,
and the set bit indicating which letter or space occupies that
position. In order to construct the set of constituents
forming the target parse tree, we first need to extract the
syntactic constituents from the wealth of information
provided by the SUSANNE classification scheme. This
includes information at the metasentence level, which can
be discarded, and semantic relations between constituents.

Finally, as described above, the GPS representation used
in our experiments requires that every constituent have at
least one terminal child. This limitation is violated by few
constructions, though one of them, the S±VP division, is very
common. For example, in the sentence ªMary loves John,º a
typical encoding would be: [S [NP Mary] [VP [V loves]
[NP John]]]. The linguistic head of the S (the verb ªlovesº) is
within the VP and, so, the S does not have any tags as
immediate children. To address this problem, we collapse the
S and VP into a single constituent, producing: [S [NP Mary]
[V loves] [NP John]]. The same is done for other such
constructions, which include adjective, noun, determiner,
and prepositional phrases. With the corpus used here, the
number of changes is fairly minor.6

4.2 Results

One of the SUSANNE genres (genre A for press reportage)
was chosen for the experiments and training, cross-
validation, and test sets were selected at random from the
total in the ratio 4:1:1. Sentences of fewer than 15 word-tags

were selected from the training set to form a set of
265 sentences containing 2,834 word-tags, an average
sentence length of 10.7. Similarly, a cross-validation set
was selected, containing 38 sentences of 418 word-tags,
average sentence length of 11.0, and a test set with
34 sentences, containing 346 words, with an average
sentence length of 10.2.

The three SSN types A, B, and C were all tested. Twelve
networks were trained from each type, consisting of four
sizes of network (between 20 and 100 units in each layer),
each size was tested with three different STM lengths (3, 6,
and 10). Each network was trained on the training set for
100 epochs, using a constant learning rate � of 0.05.

Table 2 gives figures for five networks. For each network,
the performance on the three data sets (training, cross-
validation, and test) are given under three categories: the
number of correct sentences, a measure of the number of
correct constituents (precision and recall), and the percen-
tage of correct responses on each output unit. The measure
of precision and recall used for constituent evaluation is a
standard measure used in statistical language learning [20].
The precision is the number of correct constituents output by
the parser divided by the total number of constituents
output by the parser. The recall is the number of correct
constituents divided by the number in the target parse.
Each constituent is counted as correct if it contains the same
set of words as the target and has the same label.7 The
presence of this measure in our results is significant because
it confirms the similarity of the input-output representa-
tions used by the SSN with those used by statistical parsers
and, therefore, some direct comparisons can be made; we
return to this point in Section 5.

Considering the figures in Table 2, the type A networks
are not particularly successful, with only the rare sentence
being correctly parsed. Results for the best performing
type A network are given in the first row of the table. The
type B and C networks were much more successful. For
each type, the results from two networks are given: the first
having the best average precision/recall measure and the
second having better results on the individual outputs (i.e.,
G, P, S, and label). Both the type B and C networks produce
similar ranges of performance: around 25 percent of
sentences are correct and between 70 and 80 percent are
scored in average precision/recall by the better networks. In
particular, the percentage correct for the constituent labels
and the P output exceed 90 percent. Also notable is that the
percentage results of the networks are similar across the
three data sets, indicating that the network has learned a
robust mapping from input sentences to output parse trees.
This level of generalization (around 80 percent average
precision/recall) is similar to that achieved by PCFG parsers
[20], although, for a fair comparison, identical experiments
must be performed with each algorithm; again, we return to
this point in Section 5.

4.3 Analysis of Results

The basic experimental results above have provided both
detailed values of the performance of the network with
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6. Out of 1,580 constituents, 265 have been lost to the S±VP change,
28 similar changes were made to relative clauses, and only 12 adjustments
were required to other nonverb constructionsÐmost of the verb clauses
could be artificially reintroduced on output, which leaves around
30 irrecoverable changes to the corpus structure.

7. Precision may be compared with the standard measure of ªerrors of
commission,º and recall with the standard ªerror of omission.º



specific output relationships as well as their combined
performance in terms of the constituent-level measures of
precision and recall. Here, these results are broken down
and compared to see the progress of learning the networks
over time with a comparison of the effect of the STM queue,
and a table of the actual dependencies present in the data
itself.

4.3.1 Effects of STM Length

The effects of STM length can be seen by plotting the
performance of one type of network with varying sizes of
STM. This is done in Fig. 3, in which the performance of a
type C network with 80 units in every hidden layer is
shown for the three sizes of STM, i.e., 3, 6, and 10. The
separate graphs show the constituent-level performance of
the network, in terms of average precision/recall, and the
performance of the separate output units, grandparent,
parent, sibling, and constituent label (this latter, though a
group of units, is treated as a single output). The graphs
demonstrate that, at the constituent-level, the shorter
STM lengths perform better. However, the longer
STM lengths can achieve greater accuracy with specific
outputs, in particular, with respect to the sibling output.
This is to be expected, as the longer lengths preserve more
information and, so, have a greater likelihood of containing
the phase referred to by the specific output.

4.3.2 Dependency Lengths in the Data Set

An important concern in connectionist language learning
has been the length of dependency which the SRN can learn
[8]. In this section, we provide an analysis of our data set to
see exactly what dependency lengths are present in a
corpus of naturally occurring text.

Table 3 contains an analysis of the lengths of each
dependency contained in sentences with a maximum length
of 30 words. The length of a dependency is the number of

words between the current word and that indicated by each
output. The table separately lists the lengths for each of the
output units, with the final two columns providing a total
number and percentage for that dependency length across
the whole corpus. The surprising result of this table is that
most of the dependencies (almost 70 percent) relate to the
current word or its predecessor. There is a sharp tailing off
of frequency as we consider longer dependenciesÐTable 3
only shows the shortest lengths; the lengths tail off
gradually to a length of 25 words.

With the STM, the network can only process a limited
number of words at any one time and, so, the length of
dependency which the network can handle is altered. With
a STM, the length of dependency will be the number of
places down the queue which each phase has progressed
before being required. So, in Table 4, we provide a similar
analysis to that above, but this time, instead of counting the
length as the number of intervening phases, we count the
length of each dependency as the position which that phase
occupies in the STM. Thus, if a phase is in the third position
of the STM when it is required, then the length of the
dependency will be given as three. Table 4 shows similar
effect in the range of dependency lengths to that in Table 3,
although there is a greater concentration in the shortest
lengths, as desired. The limited number of longer depen-
dencies (not shown) still extend to length 25; these are
isolated words or punctuation symbols which are referred
to only once.

4.3.3 Conclusions on Experiments

The impact of the STM is quite considerable in respect to
training times, reducing them by at least an order of
magnitude. As discussed above, the actual lengths of
dependencies encountered by the network are not changed
much by the addition of a STM. The experiments show that
longer STMs achieve better performance on some specific
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outputs of the network; however, the shorter STM still

yields the best level of constituent accuracy. This difference

is of interest, as the choice of STM length depends on one's

measure of performance. A better performance is achieved

on specific outputs with a longer STM because your desired

output is more likely to appear in the STM. But, a better

performance is achieved at the constituent level, based on a

competition between different outputs because the smaller

STM reduces the likelihood of spurious outputs competing

with the correct ones. Also note the domain specificity of

this last point: The smaller STM only works because natural

language itself has a bias toward shorter dependencies.
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Fig. 3. Comparison of the effects of STM length on a type C network with 80 units in every hidden layer.

TABLE 3
Dependencies by Type and length in Sentences with Fewer than 30 Words

Not all dependencies are shown, the greatest length is 25 words. Number of sentences: 716, number of words: 13,472, and average length: 18.8.



5 DISCUSSION

This article has focused on how SSNs can use an incremental
representation of constituent structure in order to learn to
parse. In addition, we have shown that arguments about the
generalization abilities necessary to learn to parse are
distinct from arguments about bounds on those abilities
through the introduction of the STM mechanism, which
enhances the efficiency of the basic SSN without harming its
ability to learn to parse. In this section, we consider in brief
the importance of these results for connectionist language
learning and how our model compares with other exten-
sions to SRNs for handling structured representations.

First, the experiments described above demonstrate how
a connectionist network can successfully learn to generate
parse trees for sentences drawn from a corpus of naturally
occurring text. This is a standard task in computational
language learning using statistical methods. Because the
same performance measures (precision/recall) can be
applied to the output of the SSN as with a typical statistical
method, such as the simple Probabilistic Context Free
Grammar (PCFG), direct comparisons can be made between
the two approaches. For instance, the simple PCFG can
achieve around 72 percent average precision/recall [20] on
parsing from sequences of word-tags. In comparison, the
SSN in the above experiments achieves 80 percent average
precision/recall when trained and tested on sentences with
fewer than 15 words. However, this is not a fair compar-
ison, as the corpora sizes and contents are dissimilar.

In an extension to the work here, Henderson [16] has
presented a slight variant of the basic SSN model and
compared its performance directly with that of PCFGs on
identical corpora. In those results, the PCFG, due to the
restricted size of the training set, was only able to parse half
the test sentences with a precision/recall figure of 54 per-
cent/29 percent. In comparison, the SSN was able to parse
all the sentences and yielded a performance of 65 percent/
65 percent. Even if we only count the parsed sentences, the
PCFG only had a performance of 54 percent/58 percent,
compared to the SSN's performance of 68 percent/
67 percent on that subset. The variations introduced by
Henderson [16] to the SSN mostly affect the input layer. In
this article, the pulsing inputs to the SSN receive input only
for newly introduced phases, requiring the network to
remember the previous periods' input. In [16], the pulsing
input from the previous period is carried forward in its
particular phase. An additional pulsing input unit is then
used to distinguish the newly introduced phase from the

others. Because of this change in input representation, the
results in [16] have been achieved with a type A SSN.

As noted in Section 1, experiments with natural
language using SRNs have typically used a restricted
form of input representation, either predicting the next
word in a sentence [6], [8], [30] or assessing whether it is
grammatical [24], [25]. Our extension to the SRN, the
SSN, corrects this limitation by enhancing the range of
output representations to include structured parse trees.
Our approach is designed to generate a structured
representation given a sequence of input data. The
generation aspect of this task largely distinguishes our
approach from other extensions to SRNs for handling
structured data. For example, the Backpropagation
Through Structure (BPTS) algorithm [35], [11] assumes
that the network is being trained to process structured
input data, either for classification [10] or for transforma-
tion [11]. The transformation task is closer to that of
training a parser, but, as the conclusion of [11] makes
clear, the use of BPTS relies on the input and output
having the same structural form, which prevents such
networks being directly applicable to the task of generat-
ing a parse tree from a sequence of input word-tags.
However, there is a relationship between the BPTS and
the SSN in terms of the SSN's temporal structure. The
SSN is trained using an extension of Backpropagation
Through Time, where the network is unfolded over its
two temporal dimensions, period, and phase. This is one
specific instance of BPTS, where the structure in question
is the temporal structure. However, the mapping from
this temporal structure to the structures in the domain is
done as part of the interpretation of the network's output
activations (using the GPS representation), and thus does
not fall within the BPTS framework. In the broader
context of transforming structured data, the SSN and the
incremental parse tree representation described in this
article thereby offer one way for a connectionist network
to generate structured output data from an unstructured
input.

Apart from models based on SRNs, other forms of
connectionist network have been proposed for handling the
types of structured information required for language
learning. For instance, Hadley and Hayward [13] propose
a highly structured network which learns to generalize
across syntactic structures in accordance with systematicity
[9]. However, this approach is limited due to the amount of
nontrainable internal structure required to enforce the
appropriate generalizations. As discussed in Section 3.3,
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(and Henderson [15]), the SSN relies on temporal synchrony
to produce a similar effect, which renders the generalization
ability of SSNs largely independent of its specific architec-
tural details. Indeed, in experiments training a type B SSN
on the same recursive grammar to that of Hadley and
Hayward [13], a similar ability to generalize across syntactic
structures was demonstrated [21], [22].

As the above discussion makes clear, the identical
SSN network learns effectively with both a specific toy
grammar and a corpus of naturally occurring text. This is
because the added ability to generalize over constituents
allows the SSN to generalize in a more linguistically
appropriate way, and thus deal with the high variability
in naturally occurring text. This transfer from a toy domain
to a real corpus of sentences sets the SSN apart from a
number of other proposals for connectionist language
learning, which tend to be limited to applications involving
toy grammars alone. These include the approaches that
encode sentences recursively into a distributed representa-
tion, such as holistic parsers [18] or labeled-RAAMs [34].
The number of cycles in this recursive encoding depends on
the size of the parse tree, which means that the performance
degrades as the complexity of the sentences increases. This
makes it difficult to apply these approaches to naturally
occurring text. In our SSN, we address this specific problem
by not attempting to encode everything into a distributed
representation prior to extracting the parse tree, but by
incrementally outputting pieces of the parse tree. This
incremental approach to parsing presents a different model
of connectionist parsing, one more similar to classical
deterministic parsers, as described in Marcus [26], for
example.

6 CONCLUSION

This article has described the use of Simple Synchrony
Networks (SSNs) for learning to parse samples of English
sentences drawn from a corpus of naturally occurring text.
We have described an input-output representation which
enables the SSN to incrementally output the parse tree of a
sentence. This representation is important in demonstrating
how a connectionist architecture can manipulate hierarch-
ical and recursive output representations. We have also
introduced an important mechanism for improving the
O�n2� speed of the basic SSN architecture to linear time.
This mechanism, based on the concept of a short-term
memory (STM), enables the SSN to retain only the necessary
constituents for processing. In the experiments, we have
demonstrated that a number of SSN architectures provide
reliable generalization performance in this domain.

The theoretical and experimental results of this article
go beyond language learning. It is apparent that the
SSN architectures, modeled on the Simple Recurrent
Network, are not specifically adapted to natural lan-
guage. Thus, their ability to learn about and manipulate
structured information is a general one. Although the
specific input-output representation used in these experi-
ments is carefully tailored to the target domain, its
underlying principles of incremental output and recur-
sively defined structures may be applied more widely.
Also, the STM queue, although again defined based on

cognitive limitations on language processing, may also

be used in further domains where appropriate.
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