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Abstract. The core goal of this study is to create an analytical method based on 

the energy balance equation- to model the plastic deformation of thin metallic 

tubes in a high velocity forming process under axisymmetric conditions. A yield 

criterion involves coupled effect of the axial and circumferential internal force 

resultants is presented. Using a combination of power-law strain hardening, and 

strain rate hardening flow stress models, both strain hardening and strain rate 

effects are included. The intended method allows consideration of influence of 

various terms of kinetic energy and plastic work of the tube. The study presents 

a typical electromagnetic tube expansion model, using a dynamic high strain-rate 

forming method with strain-rates above 103 s-1. Using the proposed method, the 

deformation of the specimen is achieved by the interaction of a current generated 

in the specimen with a magnetic field generated using a coil adjacent to the spec-

imen. Results reveal that the achieved high strain rates influence the plastic flow 

stress and the final permanent radial deformation, consequently. The study con-

cluded that an appropriate shape function eventuates a more accurate estimation 

of both the radial displacement and the deformed meridian profile. 

Keywords: Electromagnetic forming, tube bulging, energy method, high strain-

rate, thin cylindrical shell. 

1 Introduction 

Electromagnetic forming (EMF) method is a mechanical high-speed forming process 

which initially attracted scientises and consequently used as an advanced forming pro-

cess in industries [1]. Utilizing pulsed magnetic pressure in a flexible and controllable 

manner, the process which can shape a metal workpiece into the desired geometry holds 

advantages in comparison with conventional processes, including improved forming 

limit, active-controlled spring back, and suppressed wrinkling [2]. 

Similar to other methods, some part of the external source energy absorbed by the 

workpiece is changed into the energy of plastic deformation, and the rest is transformed 

into kinetic energy [3], [4]. After the pulsed loading terminated, the workpiece is con-

tinuously deformed by its inertia force, until the kinetic energy completely changes into 

plastic work. As the forming procedure involves high frequency and high-powered 
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coupled circuits, which have electrical and geometric properties varying with time [5], 

Due to the coupling of highly nonlinear transient phenomena, it is a challenging practice 

to understand the EMF process comprehensively [1]. 

Mamalis et al. [6] gives a comprehensive review and assessment of the electromag-

netic forming process and reports different methods that are mainly used in the analysis 

of the electric circuits in the EMF process. The equivalent circuit was developed and 

exemplified by Al-Hassani et al. [7] using a combined coil and the workpiece. The 

equivalent inductance and resistance are then represented as functions of both the coil 

and workpiece parameters. Correia et al. [8] compared the results obtained from Max-

well's equations in case of a stationary medium with those obtained for a moving me-

dium. Using Manea et al. [9] research on different velocities (103, 105, 107 m/s), Correia 

reports that electromagnetic field in a moving medium varies considerably less com-

pared to the magnetic field in a stationary medium.  

In case of a thin cylindrical shell which is subjected to a time-varying radial pressure, 

Hodge [10] reported some of such analytical approaches developed by different re-

searchers. Applying the momentum equations to the finite shell portions separated by 

two hinges together with suitable movement compatibility conditions, other authors 

[11] proposed shell deformation patterns using fixed or moving plastic hinges. 

Some researchers used finite element methods to analyse complex EMF processes 

with a loos coupling assumption [12], [13]. The proposed method assumes EMF pro-

cess as two independent processes: electromagnetic field and plastic deformation. No 

mutual influence considered between the electromagnetic field and tube forming [14]. 

Due to the symmetry of the electromagnetic bulging process, an axisymmetric con-

figuration has been used for both the workpiece and the coil. Hence, the magnetic field 

and the resulting magnetic pressure acting on the tube do not vary in the circumferential 

direction. Considering these assumptions, the problem reduces to the case of a thin cy-

lindrical shell which is subjected to time-varying radial pressure.  

Defining the structural part of the model based on the approach of [3] for plate de-

formation problem, the model presented here includes each of the following effects: 

translation and rotatory inertia, circumferential and longitudinal membrane forces, and 

longitudinal bending moment. To define the relation of both the internal resultant forces 

and the longitudinal bending moment with the displacement field, a new yield criterion 

is proposed. Involving the coupled effect of these internal force resultants, this criterion 

is adapted to the geometric situation under study. 

2 Electromagnetic pressure 

The mechanical model for axisymmetric tubular shells presented later is suited for 

pulsed loading. A typical application in forming technology, where such loads are ap-

plied to the geometries under consideration is EMF. To make the presentation more 

concrete, this application is considered and a model according to Al-Hassani [7] is re-

sumed to compute the loading in this situation.  
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A typical magnetic forming procedure is shown schematically in Fig.1. The coil is 

looped on a rectangular bar in a strong insulating case. The field generated within the 

solenoid is retained in the gap between the coil and the tube. 

 

Fig.1: Schematic axisymmetric 2D representation of electromagnetic tube bulging. Image re-

produced from Ref. [7] 

With the aid of an equivalent circuit, Ref. [7] expressed the internal radial electromag-

netic pressure for this condition as 
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where r is the deformed radii of the workpiece, RC1 and RC2 are the internal and external 

radius of the coil, respectively. N is the number of coils turns per meter and 𝜇0 is the 

permeability of free space (𝜇0 = 4𝜋 × 10−7 𝐻/𝑚).  

𝑖 ≡ 𝑖(𝑡) is the discharge current which in the experiments is very close to an expo-

nentially decaying sinusoid. Therefore, a general form is taken in the present work as: 
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where 2t0 is the characteristic time of the current pulse, i0 is the electric current at t=t0, 

and k is a decay parameter, 𝑘 = − 𝑖(3𝑡0) 𝑖0⁄ . This general form is found to give a satis-

factory fit to the experimentally measured data [15]. 

3 Analytical model 

Consider the axisymmetric configuration of a 2L length thin cylindrical shell subjected 

to uniformly distributed internal radial pressure with uniform boundary condition 

around its both ends shown in Fig.2. 

Since the complexity of the problem is such as to rule out analytical formulation, some 

assumptions made upon developing approximate methods for computing permanent 

deformation. A starting assumption which allows analytical treatment of the problem 

is to idealize the material as rigid plastic. One consequence of this idealization is to 

neglect the material characteristics of elasticity.  
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Fig.2: Meridian section and displacement field of a differential element of the shell 

Therefore, the basic energy balance equation of the problem may be written as 

 𝑊̇𝑒 = 𝑊̇𝑝 + 𝐸̇𝑐 (3) 
where 𝑊̇𝑒, 𝐸̇𝑐 and 𝑊̇𝑝 represent the rate of external load work, kinetic energy and energy 

dissipation by plastic deformation, respectively. 

All these terms may be obtained from the displacement field at mid-plane points of 

the shell. This field may be described as the product of a function of time 𝑢𝑐(𝑡), repre-

senting the radial displacement of the x=0 point of the shell wall, and a shape function 

𝜙(𝑥) of the axial distance x of the considered point: 

 ( ) ( ) ( ), .r cu x t u t x=  (4) 

As shown in Fig.2, a differential element of the shell which had the initial length dx and 

radial position R, deforms to the current radial position r and length ds which may be 

expressed as 

 
rr R u= +  (5) 

 2 21 cds u dx= +  (6) 

3.1 External load work rate 

If the boundaries remain fixed and no mechanical work is produced by boundary reac-

tions, the only external work is the one done by the radial electromagnetic force. So, 

the external load work rate becomes 

 2

0 0

L

e rW pu rdxd


=    (7) 

where ru  is the radial velocity of any point of the shell’s mid surface at position x 

which may be expressed as 𝑢̇𝑟 = 𝑢̇𝑟 ∙ 𝜙. The pressure p is assumed to be uniformly 

distributed over the internal surface of the shell i.e. 𝜕𝑝 𝜕𝑥⁄ = 𝜕𝑝 𝜕𝜃⁄ = 0. Now, sub-

stituting Eqs.(5) and (6) into (7) ,  



5 

 

 ( )
0

2 .
L

e c cW pu R u dx  = +  (8) 

3.2 Kinetic energy rate 

The kinetic energy rate of the shell may be considered as a summation of translational 

and rotational components: 

 t r

c c cE E E= +  (9) 

With the same procedure of the external load work rate, the rate of translational ki-

netic energy and rotational kinetic energy of the element shown in Fig.2 can be ex-

pressed as: 
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where 𝑢̈𝑐 represents the radial acceleration of the shell wall at 𝑥 = 0. 

 

3.3 Plastic work rate 

When the thickness of the tube is small with respect to its diameter, a distribution of 

circumferential stresses is almost uniform. Then, the axisymmetric geometry of the tube 

and axisymmetric distributed internal pressure provide the zero circumferential bending 

moment condition in the tube wall. Therefore, referring to Fig.2, the plastic work in the 

shell may be obtained from the work of the following resultant forces and moment per 

unit length of the shell: the circumferential membrane force 𝑁𝜃, the longitudinal mem-

brane force 𝑁𝑠 and the longitudinal bending moment 𝑀𝑠. As the thickness of the shell 

is small in comparison to other dimensions, plastic work due to shear forces is ne-

glected, leading to 

 s sN N M

p p p pW W W W= + +  (12) 

The plastic work rate of these forces and moment can be written as follows: 
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To utilize the Eqs. (13), (14) and (15) in a displacement-based solution algorithm, the 

relation between the internal resultant forces and the displacement field should be ob-

tained. Such relations can be obtained from the assumption that a suitable yield condi-

tion is fulfilled during the whole forming process. Therefore, the approach of Zaera et 

al. [3] for axisymmetric forming of thin metal plates is transferred to the geometric 

situation as: 
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where 𝑁𝑝 = 𝜎𝑦 ∙ 𝐻, the fully plastic membrane force, is the magnitude of a force nec-

essary to produce plastic flow over the entire wall thickness of a shell, 𝑀𝑝 = 𝜎𝑦 ∙ 𝐻2 4⁄ , 

the fully plastic bending moment, is the plastic capacity of the cross-section when sub-

jected to a pure bending moment [11] and 𝜎𝑦 is the plastic flow stress. The new yield 

condition is validated by comparison to yield criteria reported in Ref. [10] and Ref. [11] 

in Fig.3. 

 
Fig.3: Comparison between the presented yield ellipsoid and other known yield criteria: 

(a) Yield ellipsoid intersection with Nθ=0, (b) Yield ellipsoid intersection with Ns = 0, (c) Yield 

ellipsoid intersection with Ms = 0. 

4 Constitutive equation, resultant forces and bending moment 

The normality rule of plasticity for the current problem may be expressed as 
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Using equation (17) and the yield criterion, the following expressions for the internal 

force resultants can be obtained: 
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There are various forms to relate the plastic flow stress to the plastic strain and strain 

rate. As an option, a combination of the well-known power-law strain hardening and 

strain rate hardening equation [15] can be used:  
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where A, n, m and 𝜀0̇ are material constants. Further, 𝜀̇ is effective strain rate which can 

be expressed by 

 ( )2 22

3
s   = +  (22) 

Using the expressions obtained from the previous sections and the assumed displace-

ment field (Eqn.(4)), the energy balance equation, given in Eqn.(3), may be rewritten 

finally as a differential equation containing the variable uc and its derivatives: 

 𝐹(𝑢𝑐, 𝑢̇𝑐 , 𝑢̈𝑐) = 0 (23) 
This is a nonlinear ordinary differential equation whose coefficients depend on time 

and must be computed via integration in space. Therefore, this equation is discretized 

by constant-average-acceleration Newmark’s scheme. The resulting algebraic equa-

tions for each time step are then iteratively solved by the Modified Newton-Raphson 

algorithm. 

5 Results and discussion  

To validate the model, an example has been analyzed: A tube consisting of the alumin-

ium alloy AA6063-T6, longer than the forming coil simulated by Thomas et al. (2009) 

[15] is considered. Material properties of the tube, geometry and current parameters 

(Eqn.(2)) are listed in Table 1. 

 
Table 1: Case study specifications 

AA6063-T6 uniaxial mechanical constitutive parameter values [15]
 

E (Pa) σ0 (Pa) n m 𝜀0̇ (s-1) ρ (kg/m3) 

69 × 109 195 × 106 1/13.89 0.0870 1000 2700 

Geometry of the tube and coil 

Tube Coil 

R1 (m)  0.02850 RC1 (m) 0.02101 

R2 (m)  0.03025 RC2 (m)  0.02664 

2L(m)  0.0851 PC (m)  0.0094 

  2LC (m)
 

0.03382 

Coil current parameters 

i0 = 137 × 103 A T0 = 17 ×10-6 s k = 0.3 

 

With these values, the induced current in the coil is obtained. To complete the presented 

energy balance equation, a function 𝜙(𝑥) must be defined. For this example, the func-

tion is proposed as: 

 ( ) ( ) ( )( ) ( )1 2 1 1ex sign x L x  = − −
 

 (24) 

where Le=1.2LC is the effective length of the tube and is defined as the maximum axial 

distance from the tube midline that may be affected by the radial electromagnetic force 

[16].  For the function ψ(x), a variety of continuous functions could be considered, such 

as, e.g., 
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In Fig.4a the deformation profiles defined by these functions and compared to the ex-

perimental deformation profile. As can be seen, 𝜓1(𝑥) = (1 2⁄ )[1 + cos(𝜋𝑥 𝐿𝑒⁄ )] has 

the closest match with the experimental and other numerical results. This match can be 

seen in Fig.4b which shows the calculated circumferential strain of the tube midline 

during the process, using energy method and neglecting strain rate effects.  

These two comparisons show the capability of the presented energy method in mod-

elling the tube electromagnetic forming process and it can be concluded that the shape 

function 𝜓1 is the most appropriate one for this purpose. 

 

Fig.4: Comparison of the results computed with shape functions and experimental results; de-

formed profile (left) The variation of the tube’s mid-surface at x=0 (right) 

The plastic behaviour of the material is affected by the high strain rate values. The 

calculated plastic flow stress and the displacement over the time of the tube’s mid-

surface at x=0, estimated by the viscoplastic material model, are plotted, and compared 

to those estimated with the rate-independent one. The difference between dynamic and 

quasi-static flow stress is obvious and as can be seen, this difference reaches the maxi-

mum (approximately about 40 MPa) after the first pressure peak. Besides, the higher 

the flow stress, the more plastic work is obtained for a certain displacement. Therefore, 

as indicated in Fig.5, the tube displacement value obtained from the viscoplastic model 

is significantly smaller than that obtained from the rate-independent model. 

(a)  (b)  

Fig.5: Comparison between viscoplastic (dynamic) and rate-independent (quasi-static) material 

models; (a) The plastic flow stress and (b) mid-surface at x=0 displacement. 
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However, one of the main advantages of the presented model is that it allows a separate 

study of each internal component of the plastic work during the process. For instance, 

Fig.6 demonstrates normalized membrane forces and the normalized longitudinal bend-

ing moment at three different stages of the process. In all stages, the circumferential 

membrane force is more important than the other ones. 

The behaviour of the longitudinal membrane force is different; at the earlier stages, 

the distribution of this force on the axial midline is uniform (along x) tending to zero 

near the effective length. The value of this force increases with increasing the distance 

from the point x=0 over time and its maximum occurs near the coil ends (x/L = 0.4). 

 

Fig.6: Diagrams of dimensionless internal force resultants at three different instances: 

(a)t=t0, (b) t=3t0, (c)
 
t=t f 

(t=t f is the time in which the deformation of the workpiece ends) 

6 Conclusion  

Intended simplified analytical model of an electromagnetic bulging of thin metallic cy-

lindrical tubes shown a close result to those obtained previous by numerical simula-

tions. Considering energy balance equation, the model involves the coupled effect of 

the axial and circumferential internal forces and bending moment, including both strain 

hardening and high strain rate effects. 

High strain rate values achieved through the process affect the plastic behaviour of 

the tube and the estimated displacements from a viscoplastic model are significantly 

less than those obtained from a rate-independent model. 

The shape function 𝜓1(𝑥) = (1 2⁄ )[1 + cos(𝜋𝑥 𝐿𝑒⁄ )] yields the best approxima-

tions for both the tube’s mid-surface at x=0 displacement and deformed meridian pro-

file. The current analytical simulation could be expanded to any axisymmetric shells, 

boundary conditions, and loading examples, considering right shape function. 
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