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Abstract

The study of terrestrial surfaces (regolith) of celestial bodies on a large scale is only realistic if
conducted remotely. One method of achieving this is through investigating the directional properties
of light scattered from them. This light contains information that can be used to interpret their
origin, structure and taken as a whole, the evolution of the solar system.

Previous studies into photometric properties of light scattered as a function of phase angle, with
particular attention to the feature known as surge is reviewed. Surge is where there is a sudden
increase in brightness of an object when the backscattering angle approaches the source of the
illumination. For celestial objects this is only seen when the celestial body in question is in
opposition, i.e. the Earth is directly between the celestial object being studies and the Sun. It is
therefore also known as the opposition effect. Features such as shadow hiding and coherent
backscatter are explored and explained as are their individual contributions to surge.

There is some discussion given to the merits and inherent flaws taken by previous studies of this
effect, namely the empirical best fit approach compared with various computational methods in
determining probable surface features.

This thesis explores a method of simulating light scattering by particulate layers. This differs mostly
from previous computational work concerning coherent backscatter in that this uses non-spherical
particles as opposed to spheres (Mishchenko et al.) or aggregates of spheres (Litvinov et al.). The
method is tested against backscattering measurements on snow layers by Kaasalainen et al.. For this
purpose model layers have been constructed according to the snow layer descriptions (dominating
crystal shape, mean snow/grain size, layer density). According to private communication with the
authors, ice crystals are assumed to be randomly aligned. The method employed here is similar to
the one described by Shkuratov at al.: Particles are randomly distributed in a cuboid, the lateral and
bottom sides of which are cyclically closed.

Light scattering by these model layers and the resulting phase functions are computed by a ray
tracing model in which incident rays have a given finite diameter and are associated with the electric
field (not irradiance). Incident rays are arranged in a regular array covering the projected cross
section of the layer. The sum of the cross sections of the normally incident rays is equal to the
projected cross section of the layer. Diffraction is calculated for individual rays leaving the layer and
the complex electric field values are added to the respective angular bins of the electric field
distribution. In this way, the diffraction integral of a facet or sub-facet area is approximated by the
sum of the diffraction integrals of the individual rays leaving the facet/ sub-facet area. When ray-
tracing has finished the phase function is calculated.

Comparisons of modelling results with measurements have been carried out for two samples: one of
compact hexagonal columns and one of thin plates. For comparison with the experimental results,
the same four-parameter empirical fitting function as in Kaasalainen et al. was used. The phase
functions of the compact particles can be compared directly. Similarities were found in the case of
the improved seeding technique for needles and compact columns, though analysis of the field
measurements and images presented in the Kaasalainen papers has called into question the
similarities in the similarities between their samples and the simulations.



For non-compact particles such as hexagonal plates and needles the layer densities measured in the
experiment could not be achieved for the model layer. This also enhances the problem of
incomplete randomisation due to the limited layer cross section area (which is probably also the
reason for the strong oscillations in the measured phase function of the compact hexagonal
columns). Since particle size, shape and alignment distributions affect the width of the
backscattering peak, it would have been helpful, if more information about these properties had
been available.
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1.0 Introduction

There is information within individual wavelengths of light scattered from regolith (surface soil) that
if properly interpreted potentially reveals the structure of the surface such as size of the particles
(grains of dust, ice, sand etc) that form the regolith, probable physical shape of these particles and
their opacity and layer density.

How scattered light can contain this level of information relies on the fact that given a large enough
sample (such as light being scattered from an asteroid), light undergoes scattering by multiple
particles. This produces a scattering matrix which is an amalgamation of the individual interactions
integrated over the probe’s cross section. This cross section can be anything from a moving laser
spot 4mm across used to study snow samples, up to the Hubble Space Telescope (ACS/HRC)
(Showalter et al. 2008) for observing the rings of Saturn and Jupiter.

While it is not feasible to collect samples from remote celestial bodies so as to compare them with
the data collected by telescopes, it is feasible to look at terrestrial samples and record the light
scattering from them. This allows for the cataloguing of phase functions corresponding to the
regolith. This phase function corresponds to normalised intensity of the scattered light as the angle
between the light source, the regolith and the observer changes on account of the changing position
of the observer while the angle between the light source and the plane of the regolith remains
constant, i.e. its angular distribution and can therefore be described as its phase function. Where
known phase functions from terrestrial samples are the same as those from remote objects, it is
reasonable to presume that there are similarities between the terrestrial and celestial regolith.

The question arises as to the nature of surface structure of the remote celestial object when it does
not match terrestrial samples from the catalogue. In these circumstances there needs to be a means
of generating accurate phase functions for theoretical particles. This requires an understanding of
the mechanism by which scattering curves are created and a means by which it can be recreated
through simulations.

From basic principles, programs have been developed that use geometric optics to simulate the path
light takes as it passes through a medium. Geometric optics achieves this by treating light as rays. As
computer processing power has increased, these have become ever more powerful, increasing the
guantity of light rays traced through a particle in order to produce a phase function and scattering
pattern. Where a scattering pattern is simply a two dimensional representation of a phase function.

The natural progression of this development is the application of the program to multiple particles
of varying sizes and packing densities in order to observe the scattering pattern. By choosing
simulated particles that approximate naturally occurring material such as ice crystals of which the
phase functions corresponding and ensemble/layer properties are already known, both the program
can be improved and we move one step closer to being able to determine the probable structure of
remote celestial bodies.

This research concerns itself with the modelling of a layer of regolith based on known samples of ice.
Central to this is the work already carried out in the field by Kaasalainen et al. They sampled snow on
various occasions and catalogued the phase functions against the structure of the snow. The
structures included simple irregular particles, hexagonal columns, hexagonal plates and needle
structure. They also recorded, density, average particle size, the depth at which the particles were
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collected and the degree of sintering (particles that are less regular and may even have fused into
each other).

The primary issues with the project are attempting to create enough particles within a volume such
that three aspects are satisfied:

e The particles do not intersect, i.e. they do not occupy the same space.

e The density of particles is consistent with known samples.

e The particles have the same ranges of structures as known samples (particle dimensions and

shape).

The work has been carried out using MATLAB, a programming package well suited to dealing with
mathematical problems. Use has been made of existing functions such as generating normalised
random numbers and evaluating whether a line passes though a bounded plane. The language is also
very good at dealing with arrays, negating the need for nested loops, i.e. do this process to that
array rather than for each value on a line and for each line in the array, do this process.

An issue that does occur due to the nature of the problem is that arrays are continuously changing in
size, e.g. an array of particle locations increases each time a new particle is added. This makes for
code that is not optimized. Another feature of the code is that achieving higher densities requires
ever more processing time as rejections due to overlapping occur more frequently.

While the bulk of the paper deals with the steps taken to generate the simulated regolith (referred
to as a layer), the first part deals with a history of the subject and explaining the processes involved
in detail.

Applications of this research lend themselves to remote observations of celestial bodies but also for
terrestrial uses such as studying climate change. Satellite data of ice fields and deserts can in theory
be analysed to determine how the surface changes over time, such as changes in average particle
size corresponding to fresh snow verses old snow, removal of finer sand grains due to increased
winds. By making assumptions about the refractive index of the layer particles, it may even be useful
in determining the nature of chemicals detected through emission and absorption spectra. Other
uses may include studies of the atmosphere looking at aerosols, levels of dust and types of ice
crystals present.



2.0 Model Development Review

While theoretically, solutions to Maxwell’s macroscopic equations are all that is required to describe
all observed phenomena relating to light, achieving this for anything other than idealised situations
is impractical due to the complexity of the calculations for even simple realistic circumstances.

Direct solutions when they are used invariably presume ideal conditions (e.g. homogenous media
composed of particulate spheres) and are therefore unrealistic or require a phenomenal amount of
computer processing. Geometric optics (and related methods) generally ignores certain phenomena
such as interference or only produce reasonable results under specific conditions (particle to
wavelength ratio: see 2.3). Another approach taken by Hapke looks at the empirical data in order to
produce best-fit formula from laboratory and field observations and application of electromagnetic
theory in order to interpret observed phenomena.

2.1 Light Scattering in Brief

Early work into the field of scattering made some simple assumptions such as considering the scattering
material to be composed of spheres for which an analytical solution for Maxwell’s equations can be
produced (Mie theory). These models however cannot be used to reproduce phenomena such as halos
and pillars.

Later work improved on this through the use of non-spherical particles (various techniques are
summarised in Mishchenko — Light Scattering by Nonspherical Particles). This body of work derives
methods of solving Maxwell’s equations which are restricted to small size parameters (k = 2na/A -
where a is the characteristic particle size, i.e. the semi-major dimension of the surface or volume
equivalent (in the case of spheres this will be its radius) and A is the wavelength of light in surrounding
medium), due to the high computational expense except when using the high symmetry case of
spheres.

2.2 Backscattering Phenomena

2.2.1 Shadow-Hiding
This occurs where the surface being subjected to incident light is not perfectly smooth. The observer

will see shadows created by the

Observer

Incident Light individual particles and objects with

protruding features that form the
Shadow viewable

by observer

light originates from the same
direction as the observer with
respect to the surface, will the
shadows of the objects (and

particles) be completely covered

surface. Only when the incident of

and therefore hidden from the
Fig.2.1. Shadow observed when there is an angle between the observer, hence the term shadow-
observer, the object and the incident light less than 180°. hiding.

This corresponds to direct

backscattering direction, i.e. angle
of illumination is 0° while the backscattering angle is 180°. As the angle of observation changes from



Observer Incident Light

observer by object

the angle of direct backscattering on
account, shadows become more
H shadow hidden from pronounced and the backscattering

brightness of the regolith diminishes.

This can be seen in fig.2.1 and fig.2.2. In
fig.2.1, a crescent shadow is observed for
the angle of approximately 135°. In fig.2.2
with an observation angle of 180° the entire

Fig.2.2. Shadow hiding occurs when the shadow is not shadow is hidden from the observer. As the
observable, i.e. observation angle is 180°. angle between the direction of incidence

and observation increased between the two

diagrams the crescent became smaller and therefore the overall brightness increased.

Albedo is the ratio of reflected/scattered solar energy to incoming energy over wavelengths of

approximately 0.3 to 2.5 micrometres. Values range from 0 (perfectly black) to 1 (perfect

reflector/scatterer). It plays a role in shadow-hiding due to the opposition effect being dramatically

larger for low albedo materials. This is because materials
with low albedos absorb more light leading to less scattered
light and therefore producing darker shadows.

Early models of inhomogeneous layers of particulate media
(Stankevich, Shkuratov & Muinonen, 1999) used a geometric
optics (GO) modelling approach to produce calculations of
photometric characteristics with accuracies better than 1%.
These indicated for statistically homogenous particulate
media, packing density was the single parameter that
characterised the shadow-hiding opposition effect.

It has been known for a long time that as the viewing angle
of the rings of Saturn changed due to observing them from
Earth, there is a sudden spike in the reflected brightness at
specific times (Seeliger, 1895). This surge is due to
backscatter but more importantly, it is not directly
proportional to the viewing angle of the incident light
reflected back towards Earth and the tilt of the rings. It was
observed that the surge was confined to a small angle.

This opposition surge was also noted for the lunar surface. It
has been observed that the brightness of the moon
increased by nearly 40% between about one day before a full
moon and the time of the full moon. The studies (Hapke,
1998) indicated that the reason could be explained by two
potential mechanics: Shadow Hiding and Coherent
Backscatter. Together these provide an important tool in

HST » WFPC2

Fig.2.3.
http://spaceplace.nasa.qov/saturn-

rings/

remote sensing for determination of porosity and mean free path of photons in the regolith.




During the Galileo’s G7 orbit of Europa, similar discoveries were made (Helfenstein et al., 1998)
though the brightness spike varied with the type of terrain observed.

2.2.2 Coherent Backscattering

Where a particle is non-absorbing, or at least only partially absorbing, part of the light will be
reflected and another part of the light will be refracted into the particle and undergo further
reflection/transmission events at the particle surfaces.

An interesting feature of this discussed below, is that given the ‘effectively infinite’ number of
discrete layers that form a regolith, it can be proved that virtually all the light incident on the surface
will be reflected or refracted out (in the case of ice or other optically transparent media). Of this light

being scattered back towards the

Incident Light L . . .
Incident Light incident light, it is found that it

Observer

Obeerver generally becomes polarised to
some degree (depending on the
nature of the scattering
material). At angles close to
opposition, it is scattered and
undergoes constructive
interference producing coherent
light and as a consequence there

is a brightness surge.

In the diagram the two sets of
arrows represent paths followed
by incident light. The dotted
arrows follow the conjugate of
the solid wave path from the
illuminator to the observer

where the observer is a long

Fig.2.4. The dotted path is conjugate of the solid path. Shown in this distance from the scattering

diagram for three particles, this can be applied to any number of medium.
particles in the path.

As the particles are randomly

aligned, if the angle (a) between the light source, regolith (or scattering medium) and the observer is
large, the effect of interference will average out between the pairs of conjugate scattered waves.
Scattering will therefore be incoherent and there will not be a brightness surge due to coherent

interference.

As the angle (a) tends to zero the phase difference between the conjugate paths though any
sequences of particles also tend to zero, resulting in coherent interference.

2.2.3 Polarisation Opposition Effect

Light backscattering from a planetary surface has been discovered to be negatively polarised at small
backscattering angles. It is a sharp asymmetric feature with a minimum at a phase angle comparable
to the angular semi-width of the opposition brightness surge.
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Unpolarised light can be considered to be both positively and negatively polarised by the same
amount. As such as it passes through a medium it passes along conjugate pairs of paths as shown
above. Positively polarised conjugate paths between particles in the scattering plane have their
phase angles changed while those scattering through particles perpendicular to the plane, i.e.
negatively polarised conjugate path do not. As a consequence, there is enhancement of the
negatively polarised paths over a much wider range of phase angles.

While unpolarised light is both positively and negatively polarised as it passes through a medium,
the phase angles of the positively polarised conjugate paths (between particles in the scattering
plane) changes while for conjugate pairs negatively polarised rays (between particles perpendicular
to the scattering plane) it remains zero. This results in enhancement of negatively polarised
trajectories over a wider range of phase angles than positively polarised trajectories. Further to this,
only certain particle configurations contribute to polarisation opposition effects.

The lunar surface for example exhibits prominent negative polarisation (Shkuratov, 2002).

2.2.4 Size Parameter

Kuga and Ishimaru (1988/9) studied backscatter as a function of density and spherical particle size
and determined that backscatter enhancement could be achieved through different mechanisms.
They termed the mechanisms Type | and Il and defined them as:

Type | - coherent backscatter caused by light rays travelling along conjugate paths and is strongest
for relatively small particles with size parameter 1<k<20 and layer densities > 2.5%.

Type Il - caused by the focusing effect of large particles in a disperse medium.

2.2.4.1Backscatter as a function of density for large size parameter

Their experiments with particles of very
large size parameter k(>10,000) where -40

=2mta/A, A is the wavelength and a is the
radius of the particle revealed a
relationship between the density of the
media and the intensity of the
backscattering peak. As can be seen in the
graph, as the density of the media

\ N 16
decreased from 19.1% (A) down to 7NN
o L . =70 ﬂ.r"".a-""‘ SO 7
0.149%(H) the relative intensity of the 1.9t S

INTENSITY (DB)
a

== -

backscatter peak increased. _— Tz e
-80

Comparisons of experimental data were -4 -3 -2 -1 0 1 2 3 {4

made with solutions for Second-Order ANGLE (DEGREES)

multiple scattering (as this is suitable for
large size parameters in the near

backscatter direction). When compared the Fig.6 Backscattering enbancement by
. layge pazticles. Particle size is 5 mam,
shapes of the predicted curves and those -

achieved experimentally were very close
Fig.2.5. Kuga& Ishimaru. SPIE927(1988)33-37
except for the back scatter peak. As
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coherent backscatter is not accounted for Second-Order multiple scattering theory and the peak
obtained experimentally was the single feature missing from the solutions, they concluded that the
peak must be due to coherent backscatter. The intensity at wider angles however is due to
incoherent scattering.

2.2.4.2 Backscatter as a function of size

Kuga and Ishimaru (1988/9) looked at another type of backscatter they termed Type Il, caused by
the focusing effect of particles in a disperse media. They studied glass beads (5mm size) in a solution
of water, varying the density of beads. In these circumstances they concluded that the focusing
effect of the beads and its reflection was responsible for the increased intensity in the back
direction. The key element in their studies was the average distance between

This is
related to

INTENSITY

the spheres suspended in the medium. The brightness surge (backscatter
enhancement) was greatest where the average distance between the beads
was equal
to the L —
focal ________HA““___*
length of — 18
the o7 _____,_._._._/"“\1_.-—1_..__,_‘ C
beads. _.--—-—""‘-‘/\"'“——— 0
O E

the size

Fig.2.6. Type Il
Enhancement

parameter. In this case the

178 179 180 181 182
SCATTERING ANGLE @

density of the medium was

important as the higher the Fig. 3. Cross-polarized intensity for different volume densities: A
density the greater the chance =19,1% (r = 253)1 B =9.55% (T = 1265}, C=4.775% (r=83.3),0D=

. L 2.39% (r = 31.6), E = 1.19% (r = 15.8), F = 0.597% (r = 7.9), G =
of two beads being within the 0.298% (r = 3.95), H = 0.149% (7 = 1.98),

focal distance of each other.
Fig.2.7. For size factor 33,000. Kuga& Ishimaru. Applied Optics

This is indicated in the adjacent
28(1989)2165-2169

graph for various densities

where the size parameter is
greater than 10,000 and as such the brightness surge in the back direction cannot be attributed to
coherent backscatter. Their experiments did not include samples of particles of different shapes. It
cannot therefore be confirmed as to what effect this will have on Type Il backscatter enhancement.
It is however predicted that for non-spherical shapes such, there will be reduced enhancement
simply on account of the lack of common alignments leading to focusing.

2.2.4.3 Summary of Kuga and Ishimaru Findings
For size parameters:
o 1<k<20 Strong Type | enhancement and most visible when the volume density becomes
more than 2.5%.
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e k=50 Broad peak due to Mie scattering (single scattering) and sharp peak due to the
backscattering enhancement Type I. Sharp peak appears on top of a broad peak when
density greater than 10%

e k=300 Mie region of scattering has a sharp peak and possibly create a focusing peak due to
Type Il enhancement. Difference between Mie (single) scattering and coherent
backscattering is that Mie scattering decreases as volume density increases due to
incoherent intensity increases due to multiple scattering.

e k> 10,000 Backscatter enhancement due to Type Il enhancement (for spheres).

2.3 Geometric Optics
For particles large compared to the wavelength, one method by which backscatter can be modelled
is by Geometric Optics (GO). This utilises rays, traced from a source to a screen or observer as a

means of modelling the behaviour of light
being emitted and detected. A light ray is a

normal
line drawn in space corresponding to the

direction of flow of radiant energy. They
incident light reflected light .
ray /— ’_\ ray propagate along rectilinear paths where the
o o media is homogenous though can bend or

i be split in two at interfaces between two

n; dissimilar media, obeying Snell’s Law
o (derived from Fermat’s principle of least
2
time). Fundamentally, the rays passing into
refracted light a media with a higher refractive index(n)
ray
Fig.2.8. Refraction and reflection of light ray “"\)/
%
will be bent towards the normal (and vice-versa) and < ‘/‘//2/
the angle between incident ray and the normal is (_ff_/ L{//
equal to angle of the reflected ray and the normal as /,&7"

shown in the diagram below. —
%(('-i‘/
3

Snell’s law is expressed by the equation:

Fig.2.9. Light hitting an interface between
two media
http://en.wikipedia.org/wiki/File:Refraction_

This mechanic works very well for describing how ~Huygens-Fresnel_principle.svg

lenses focus light and produce images, describing observed phenomena such as inversion of the

image, magnification and diminution of the image and even virtual images.

Where the wave length of the light is small compared to the size of the objects, this mechanic is
very good at describing how light is propagated and has been used in early models of media formed
from particles (Stankevich, Shkuratov & Muinonen, 1999) This though was for homogenous
particulate media.

In order to deal with other naturally occurring phenomena and situations where the wavelength of
light is closer to the size of the particles it is interacting with it however needs refining.
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In order to understand the phenomena, a plane light wave can be described as a series of point
sources along the propagating wave front (Huygens-Fresnel principle) and that at any time after this
the new wave front can be described as the product of the superposition of the individual wave
fronts from these points. This demonstrates how light is bent as it passes through from media to
another in the adjacent image.

The principle can be used to explain the phenomena of light and dark bands where light is diffracted
around the edge of an object that is partially blocking the light or where light passes through an

aperture. As can be seen from the image the new wave
fronts are a formed from the wave fronts of the
individual points. The points on the edge of the aperture
are responsible for the light bending round the corner of
the aperture. Where light is partially blocked by an
object the points of the wave front on the edge of the
object indicate how light is diffracted around the object.
While this principle accounts for the bending of light at
==1"1" edges, it does not consider superposition, the
interference of the light rays from the infinite quantity
of point sources that theoretically lie along the wave

front. The treatment of these both in the near field and

the far field needs to be considered.

Near Field

Near field as specified by the Fresnel number F (=a’/LA)
> 1, where a is the size of the aperture (or object around
Fig.2.10.

http://en.wikipedia.org/wiki/Huygens%E2%80 which light is being diffracted), L is the distance of the
%93Fresnel_principle observer from the aperture and A is the wavelength of

light. Fresnel diffraction produces a series of light and

dark bands in the near field.
Far Field

Far field diffraction is modelled using Fraunhofer diffraction equation. The far field is as the name
suggests a long distance from the aperture (or partly obscuring object) and occurs when the distance
is large enough such that the difference in phase between the light from the extremes of the
aperture (or opposite edges of the obscuring object) is much less than the wavelength. As such
individual contributions can be treated as though they are parallel. Numerically it is defined as a/LA
«1. In the case of studies of ice crystals and particles only a few millimetres in length, the far field is
effectively any distance greater than a metre.

2.3.1 Ray Tracing

As the ray hits each interface, in this case a facet, either into a particle or out of a particle, it will in
reality be refracted and reflected. There are different approaches to how the rays are tracked
through the medium and to the observer/collector.
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2.3.1.1 Probabilistic Method

Rather than attempting to keep splitting the ray into two components representing the relative
amplitudes of the reflected and refracted ray produced at each and every interface, a probabilistic
approach was taken (Shkuratov & Grynko, 2005). This significantly cut down on computer overhead
which would have required up to two rays to have been followed after every single interface where
both refraction and reflection occurred. The probabilistic approach simply followed either the
reflected or refracted path based on a random chance weighted by the relative amplitudes of the
two possible rays. For example for light with intensity /, if the lrefiected = 0.7 lincigent , there was a 70%
chance that the program will follow the reflected path and 30% it would follow the refracted path.

2.3.1.2 Follow all Paths

Another approach is to simply follow each new ray as it is generated through refraction. This
approach requires a lot more computing power as a consequence. Limits are set to the quantity of
rays that will be generated based on the intensity of the ray compared to the intensity of the parent
ray. It is generally found that there is a sharp increase in rays as the rays undergo first ray surface
interaction but after a time as the intensity of the rays diminishes and the rays leave the layer, the
quantity decreases. In this method there will always be energy left within the scattering medium as
paths are terminated without leaving the layer. This is a much less simplistic approach than the
probabilistic method.

Aigen Li z1 2.3.2 Diffraction on Facets

18-07-2007
It was found that standard GO far field patterns /(6,¢)

. Scattering ::\_
" Angle i Scatterecll %l(gehi) (see diagram) produced from the passage of light

o: Azimuthal (o /100.0)= i through a single particle tended to consist of a series
* Angle e ( )

of dots, each representing where the ray finally ended.
There is also a disagreement in phase functions of
single, randomly aligned particles with planar facets

: kfﬁ:ﬁgn” (crystals): GO predicts sharp spikes in direct forward

and backscattering and saw-tooth like halo-peaks. This

though was often a poor comparison to both the
scattering pattern produced through laboratory

experiments and results generated by the exact but

Incident Light: I, computationally expensive separation of variables
Fig.2.11. F(8,¢ ) is the (dimensionless) angular method (SVM).
scattering function, r >> A/ 2mt is the distance from
the scatterer, and k = 2 it /A is the wave number in .
vacuum / In order to improve the standard GO model,

diffraction on facets was introduced (Hesse,

Ulanowski, 2003). This worked on the principle that
where the wavelength of light was comparable to the diameter of an aperture (in this case, a facet is
the equivalent to an aperture), diffraction started to play a significant role in the transmission of
light through a particle.

To accommodate it, the model took into account where on the facet the ray interacted with the
particle. By considering a facet in two perpendicular dimensions as a slit, the new path of the ray
following its refraction or reflection at a facet would then be deflected towards the nearest edge of
the facet. The degree of deflection increases as the distance to the edge of the facet decreases.
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The energy flow calculations were initially carried out for a half-plane, for which an exact solution of
Maxwell’s equations exists (Braunbek & Laukien). As this effectively mapped the energy flow
through intersection points with the plane containing the half plane at any given distance from the
slit edge, it could be applied to discrete quanta of energy, i.e. photons. By determining the
propagation of energy the effective far-field deflection angle could be calculated with respect to the
direction of incidence.

The formula below was constructed using the formula obtained for a half-plane.

@) = . A(l 1 )
p\x) = arcian 47_[2 X d— x

Where ¢ is the far-field deflection angle and x is the distance from the edge of the facet and 2a is

the width of the facet (slit). In this case, where x = a (the middle of the facet), there was zero
deflection, whereas at the edges (x — 0,x — 2a), deflection was maximum.

This effectively improved of the basic GO which ignores diffraction.

Instead of producing dots, the rays become more dispersed and the final scattering image produces
results that were closer to experimental results and SVM model for phase function and than the
standard GO method without unduly increasing the computational demands.

2.3.3 3D Implementation

As initially only the nearest facet edge had been taken into account and the degree of deflection
calculated using an approximate relationship obtained from the exact half-plane diffraction theory
as applied to a slit (with the same dimension as the facet), the above method produced only
diffraction in two dimensions. This approach was expanded (Clarke et al. 2006) into three
dimensions by applying two deflections each obeying the basis of the 2D rules, regardless of facet
shape. The first deflection was always towards the nearest facet edge and the second was
perpendicular to the first.

2.3.4 Further Improvements to the diffraction solution

A feature of the model developed this far was a singularity of the far-field deflection angle at the
centre of the slit. This caused an overestimation of the number of raypaths contributing at very low
deflection angles. To improve on this shortcoming, Hesse (2008) utilised the approximation
developed by Prosser (1976) for Fraunhofer diffraction by a slit (which approximates forward
scattering much better than the equation above) and derived best-fit formulas.

These produce depleted angular density of energy flow lines in the far field around the angular
position of the first minimum for the Fraunhofer diffraction pattern as well as weaker reductions at
higher-order diffraction minima in accordance with Prosser’s statement regarding redistribution of
energy.

The main advantage of this was to improve on standard GO when approximating the results of SVM
over the whole angular range without significantly increasing computational overhead. The greatest
improvements were at near-direct forward and backscatter, in the halo region and in the
backscattering region between 142° and 160°.
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2.3.5 Application of the RTDF to particles with curved surfaces

Up to this point the model was only effectively applicable to faceted particles. In many cases
however ice melts then refreezes, creating irregular particles that have curved as well as faceted
sides that are classified as ‘hybrid’ particles. Added to this, an aggregate may also contain dust grains
that have curved surfaces.

The method used to simulate the curved surface (Hesse et al., 2009) was to treat them as having
multiple faceted surfaces. In essence, a curved surface could be treated as having an infinite number
of facets however for practical purposes the approach taken was consider a sphere for example as
having a fixed number of trapezoidal facets with triangular ones at the ‘poles’. Models were made
and tested for spheres having 800, 1352 and 2592 facets, corresponding to 9°, 7° and 5° angles
between the normals of the adjacent facets respectively. Comparison of the results (especially for
the 2592 facetted spheres) with T-matrix and Mie theory (for spheres) produced better results with
respect to exact calculation than GO over the whole angular range and in particular in the near-exact
forward and backscattering, and in the halo region.

2.4 Aggregate Model

Ray Tracing with Diffraction on Facets (RTDF) requires a medium to interact with therefore in order
to apply RTDF particle models, virtual particles must exist.

Baran and Labonnote (2007) developed an ensemble model of ice crystals. The simplest and smallest
crystal consisted of a single hexagonal ice column (these form the basis for the research detailed in
this research). Larger aggregates were obtained by arbitrarily attaching other hexagonal columns or
plates, becoming more complex. The largest in the ensemble was a chain-like crystal. The ensemble
consisted of six ice-crystal members and was tested, generally predicting the ice water content and
extinction measurements to within a factor of 2. It was also determined that more simple members
of the ensemble were able to produce GO results consistent with measurements of polarised
reflection taken by satellite instruments.
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3. Physical Experimentation/Observation Review

3.1 Ice Analogues
Ice analogues, grown in solution (Ulanowski et al.,

2006) were shown to have close agreement between
the measured functions and the analytic phase
function for ice clouds on account of their near
identical refractive index at optical wavelengths. The
analytic phase function is a linear piecewise
parameterization of the Henyey—Greenstein phase
function generated by assuming some value of the

asymmetry parameter. The experiments showed the

R Y
22° halo peak for smooth rosettes and aggregates
Fig.3.1. Images showing the 22 degree halo as light
from the sun is scattered through cirrus clouds and
corresponding ray tracing.

(but not for rough rosettes).

The results suggested that it would be possible to use
such 2D scattering patterns to discriminate not only

between crystals of different shape but also to obtain
Incoming Sunfight some information on surface properties and that 2D

scattering could be used as a basis for determining

°E Crystal classes of ice crystals. Supporting or alternative
/

discrimination could also be provided by polarisation
measurements.

Outgoing Sunlight
22 Degree Angle
Figs. 3.1 show a 22° halo observed at cirrus clouds

and a schematic demonstrating the formation of this
halo, which corresponds to the minimum angle of deviation at a 60 degree prism.

3.2 Field Measurements of Ice Backscattering

Work by Kaasalainen (2006) established angular intensity distributions close to and including direct
backscattering by snow. This determined key factors in the process, these being temperature
(related to the changes in the grain structure) and grain shape and size. Interestingly enough
increasing packing density of the snow only increased the surface brightness. The data produced is
instrumental in determining whether the ice analogue described above to be used in the future
modelling is sufficiently accurate enough to allow it to be used as a reference.

3.2.1 Kaasalainen Method of Data Collection

The goniometer employed by Kaasalainen et al. works through recording intensity against scattering
(phase) angle for a sample. In the case of fresh snow needles, while snowing, surface snow was
collected in a sample cup and snow was allowed to fall onto the surface of the sample. Other
samples were collected by careful scooping. A series of 5 readings (shots) were collected using the
charge-couple device (CCD) detector with the sample generally being rotated between series of
shots. Once the shots were taken, the angle of the beam splitter was changed and the process was
repeated. Instabilities in the apparatus along with speckle from the surface and other sources of
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noise meant that even

when the sample was not CCD ?
. . camera 4
rotated, the intensity | optics

from sequential shots

would not be exactly the I I'

same. In cases where l Jllt

speckle (presumably tbeam Splmelraser

reflection from a single i o] C' /gr il
facet from a surface

\| phase angle

crystal) significantly I A
increased the intensity, I

the goniometer was I

rotated minimise it. “The %e

sample was rotated so

that a larger part (than

. . Fig.3.2. Small-angle goniometer employed by Kaasalainen (JoG vol52. 2006). The non-
just the laser spot size) of ; K ) ;
zero backscattering (phase) angles are obtained by rotating the beam-splitter.

the sample would be

represented, and also
because that is one way to minimize the laser speckle effect” (Sanna Kaasalainen). Environmental
conditions such as conducting the sampling while it was snowing played a role in increasing noise in
the data.

The error bars in the data plots represent the standard deviation of the readings from the mean for
the 5 shots. Increasing the number of shots to 10 did not improve errors and after testing by a team
member the practise was

abandoned.

The beam splitter was adjusted so
as to collect data from both sides of
the central intensity peak,
corresponding to backscatter
(phase) angles greater than and less
than 180° (0°). This was done to

investigate symmetry about central S
’ ’ 4 Fig.3.3. Glare in output is probably attributed to end facet (indicated in

intensity peak. In theory this is render with a red arrow) oriented towards observer.

simply the equivalent to rotating
the sample through 180° degrees while keeping the backscatter angle the same.

“[T]he fact that the error bars are different size is from the fact that specular reflections occur at
some points, because of the random orientation of the grains” (Sanna Kaasalainen).This is in line
with domination of the output by surface reflection from a few crystals such as in this case opposite.

Weather conditions such as extremely low temperatures along with precipitation and winds made
both the collection of samples and data measurements difficult while the probability that more
accurate sampling and data collection is not deemed likely in the future without a significant
improvement in technology.
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3.22 Images

The images presented in the 2006 paper were small and as a consequence it was not possible to

determine differences in the classification of crystal snow used within the field. Access to the original

images however have now provided considerably more information and when combined with the

expanded details on the techniques used to collect data, highlights fundamental considerations both

on the expectations of any model and even forming a consensus on how to classify snow sample

from the diversity of crystal shapes that can be present. The diagram below indicates the type of

snow crystals that can manifest based on the environmental conditions. Melting and refreezing of

the crystals along with the presence of less than pristine crystals will all contribute to the phase

function of the sample. Details of the images for samples corresponding to the simulated models

investigated in this thesis are considered in 4.11.

supersaturation (g m3)

Snowflake Morphology

Fig.3.4. Snowflakes can be characterized by the snow-crystal morphology diagram, which shows crystal shapes as a
function of the temperature (x-axis) and humidity (y-axis) in which they grow. Here the humidity axis actually refers to
the supersaturation — the excess water-vapour density above a humidity of 100%. The water saturation line (blue)
shows the supersaturation that would be found in a dense cloud of water droplets.
http.//www.its.caltech.edu/~atomic/snowcrystals/primer/primer.htm
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3.3 Astronomical observations of backscattering and how they apply to

size, shape and refractive index of particles forming planetary regolith

In his work on the Opposition effect, Hapke (1998) takes the approach of separating the observed
brightness surges caused by shadow-hiding and coherent backscatter and subjecting them to
individual analysis. By the use of empirically derived formula, he achieved an analytical tool by which
he could evaluate regolith in order to approximately determine porosity and transport mean-free
paths of photons within it. In the paper there is what appears to be a developing difference of
opinion between his body of work and that of Mishchenko, noting that in Mishchenko’s work the
mean-free path for photons was greater than the particle size, i.e. derived density was far too low,
closer to that of a gas rather than an icy soil. Hapke admits that using either analysis is insufficient on
its own to describe the observations made of the lunar surface. It was probable that opposition
effects were due to a mixture of shadow-hiding and coherent backscatter.

3.3.1 Europa

Galileo’s G7 orbit of Europa produced sufficient data that an initial evaluation of the regolith
(Helfenstein et al. 1998) was able to indicate that shadow-hiding and coherent backscatter were
responsible for the opposition surge. It was noted that stratigraphically young ridges with relatively
pronounced topographic relief exhibited anomalously weak opposition surges in comparison to
other Europan terrains that had similar spectral properties. From this it was concluded that surface
probably consisted of course regolith grains rather than solid ice or compacted ice grains.

Data collected from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) was analysed by a
team led by Brown (2003). This revealed a surprisingly high opposition surge on Europa. Here they
identify clear trends with albedos and surges such that higher albedos have lower opposition surges.
An issue with this discovery was that under the applied mechanism, it would indicate a porosity of
~99%. This they reconcile with their inability to correct the data for rotational phase effects due to
lack of published data. As such they concluded that neither coherent backscatter nor shadow-hiding
provided a complete description of the Europa’s opposition surge below 1°.

This work was followed up by subjecting the data to the Hapke photometric function (Simonelli,
2004). Again it was largely concluded that surges at phase angles < 1° could not be explained by
coherent backscatter and that shadow-hiding must play a significant component, even at
wavelengths were Europa is bright.

Simultaneous photometric and polarimetric measurements of laboratory samples that simulate
planetary regoliths were compared to computer models (Shkuratov et al., 2005). The research
utilised a ray tracing model that had been previously developed (Stanevich et al., 1999). The two
methods both produced negative polarisation and greater prominence of the opposition
phenomena when the samples were compressed. Taken together they concluded that shadow-
hiding was the main factor affecting backscatter at all phase angles though could not determine a
direct contribution of the shadow-hiding effect to the formation of the negative polarisation
branches. They supported the hypothesis that diffraction was a key factor in both polarisation and
coherent backscatter. As they did not detect negative polarisation in fluffy fresh-fallen snow with
course particles (Shkuratov et al., 2002) though did for metallic powders, it was implied that for
metals there was an additional contributing mechanism.
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Shkuratov’s evaluation of Europa was that it was likely to consist of large icy regolith particles but
with a subtle structure on micrometer-submicrometer scales.

An alternate method for modelling regolith and scattering has been to use direct solutions of the
Maxwell equations (Mishchenko 2009). By numerically exact computation of electromagnetic
scattering by media consisting of large numbers of randomly positioned spheres, demonstrations of
the interference nature of specific backscattering effects could be made. This method it was claimed
would eliminate any uncertainty associated with the use of an approximate theoretical approach;
control precisely all physical parameters of the scattering medium, allowing one variable to be
altered at a time; compute all relevant optical observables at once. For anything other than simple
and ideal systems, this though is not technically possible. This could then be used to definitely
answer the physical origin of brightness opposition effect and polarisation opposition

22



4. Method

The main objective of this thesis is to explore a method of simulating light scattering by particulate
layers. Within this work, light scattering by snow layers will be modelled and compared with
experimental results by Kaasalainen et al. In order to achieve this, a model of a virtual particulate
layer has to be constructed that will simulate snow under various conditions. The model has to bear
a resemblance to physical snow layers such as those studied by Kaasalainen et al.

The method taken to achieve this goal required a series of steps, building on simple models using
MATLAB (Matrix Laboratory — a numerical computing environment) and adding sophistication.
Essentially the creation of a virtual particle layer starts with defining the outer limits of the layer. The
volume of this layer is then subjected to various methods of seeding bounding boxes. A bounding
box is defined as a point within the layer surrounded by a volume such that no other bounding box
shares the bounded volume. Once seeded, the total volume of boxes was compared to the volume
of the layer in order to determine the density of the seeded mass (when applied to the density of
ice).

Further work refined the process in the following ways:

e Replacing bounding boxes with bounding spheres

e Cyclically closing the sides

e Duplicating bounding spheres that crossed boundaries

e |nserting a crystal into the bounding sphere

e Randomly aligning crystal

e Removal of crystals beyond the layer limits

e Replacing bounding spheres with bounding cylinders (then reverting back)
e Replacing crystal with crystals with random parameters

e Testing crystals within overlapping bounding spheres

e Improving bounding spheres to test for convex hulls

4.1 Lattice Model

As a first step in the design, a ‘wire frame’ model was
developed. This consisted of a three dimensional layer into

which bounding boxes could be seeded at integer locations.
For example, a layer, 3x3x3 has a potential of 64 locations.

For these ‘particles’ could only be seeded into empty

locations. The first image below shows the centres of two 05

particles (red points) having been seeded while the second ol

image shows the centres of 3 particles seeded in three o

dimensions.

Attempts at seeding a particle into a random location within e

the layer would then continue until a breakout-point was
reached. The breakout-point occurred when the number of Fig.4.1. Wire frame model with two particles

failures to seed a particle (rejections) due to the point

already having a particle had been reached. Each successful seed reset the quantity of rejections
back to zero.
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The next step was to give ‘volume’ to the particles, turning
them into bounding boxes. The bounding box dimensions
were set to just greater than the distance between two

A
N

%
/)

neighbouring points on the lattice. The reason for being

i
Sk

b 4"”"@&7‘1 just greater was to ensure that they would impede on the
@ 'gr"‘i?;"i?,%‘ surrounding space, i.e. when a bounding box was centred
= 'A/‘lfég;ég:'yg% on a point, the edges of the box would be beyond the

/|
N
A
N
N

[ halfway point to all adjacent point (overlap marked in

W

Y

2 grey). This was achieved by allowing the particle to
encompass all adjacent points and by checking at the point

e e of seeding if there was a particle already seeded in an

adjacent point in all three dimensions, i.e. the second one
Fig.4.2. 3d view of wire frame model J P

of the boxes to

be seeded in the image would be rejected. Within the
plane of the particle this would mean 8 locations. There

would then also be 9 locations above the particle and 9
locations below the particle — a total of 26 locations (27

including the seed point).

Preliminary Results

What was discovered was that irrespective of how large

the breakout-point was set it was always impossible to Fig.4.3. Overlap of particles (red)

shown in grey

achieve the potential density as cavities between the

bounding boxes were created into which no particle
could be seeded. By potential density it is meant the density achieved if all the boxes were assigned
locations to minimise space between the boxes and the sides of the layer (like neatly stacked
building blocks in a toy chest).

4.2 Development of MYSQL for storing data

Based on the original work plan MYSQL (a relational database management system) was integrated
into MATLAB in order to create a flexible data store. This allowed for data to be spawned and saved,
manipulated and recalled. Significant progress was achieved though this method had two
fundamental issues:

e |t meant that for the work to be continued by others following the completion of the MSc, it
would require the installation of MYSQL in any workstation that would be using the code
and have a working knowledge of MYSQL.

e |t was essentially a waste of time as the output data had to be plain text in order to be used
by the existing ray tracing model. This meant that all data spawned had to have an extra
routine to extract it from the database then output as a text file.

The MYSQL phase was essentially redundant and as such was eventually removed from the core
programs. While it is the author’s opinion that including MYSQL is a sensible step forward both for
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ease of manipulation of data and speed of processing and ultimately it requires modification to the
ray tracing model for acceptance of data straight from a MYSQL database.

4.3 Creating of bounding Sphere and Cyclically Closed Loops

Following on from a nodal array in which points could only exist at integer locations, the design was
expanded to allow spheres to exist at floating point locations, i.e. at any location within the layer as
produced by generating random floating point numbers for the X,Y and Z co-ordinates within the
limits of the edge of the layer. The spheres were assigned along with a fourth parameter; radius.

A bounding sphere is essentially the smallest spherical volume that will completely envelope any
object within it. An early approach was to determine the size of the bounding sphere based on the
largest dimension of the crystal, i.e. if a hexagonal plate this would likely be radius dimension or
length dimension for needles. The new approach determined the bounding sphere from both
dimensions. This would only potentially increase the size of the bounding sphere and as a
consequence increase the chances of using the convex hull test. This eliminates the small chance
that there could be an overlap due to a crystal extending beyond its bounding sphere.

For a cube (adjacent diagram) of edge length 1 the
circumscribing sphere will have a radius of 0.867
(=sqgrt(3)/2), i.e. a diameter (dimensions) of 1.73 (d in Fig.

4.5). For hexagonal columns where the length is large
compared with the diameter (needles) or the diameter is

| ::_> large compared with its length (plates), the surface radius
will be much greater than its width (needles) or length

(plates) and the resulting sphere’s volume will be many
/ times the volume of the hexagonal column.

This proved an impasse to creating layers with densities as
high as those examined by Kaasalainen et al., (2006). This
Fig.4.4. Bounding sphere around a cube issue and its

potential

resolution are dealt with in section 4.6.

Before the program committed to adding the sphere a

check was made against all previously seeded spheres to
ensure that the space was not already partly occupied by d
a previously seeded sphere.

The method of checking for overlap was a matter of

calculating the separation between centre of the seeding
sphere and all the particles already accepted into the
permanent data array. If this separation was less than the

combined radii of the sphere to be seeded and any of the Fig.4.5. Bounding sphere has diameter d

previously seeded spheres, the seeding sphere would be
rejected. A failure breakout was included. This was the quantity of sequential rejections required for
the program to terminate.
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An observed effect of failure breakout and random radius within assigned limits for seeding spheres
was that towards the end of the program there was a notable decrease in the size of the spheres
accepted. This became more pronounced with increasing value for failure breakout. This equated to
filling in the cavities within the layer with smaller spheres. The greater the failure breakout, the
higher the chance of a smaller sphere being randomly selected and assigned to ever smaller
remaining cavities (see section on Increasing Breakout-Point). The samples studied by Kaasalainen et
al., only give the range of snow crystal grain size rather than average grain size and size distribution.
Some caution should therefore be taken in literal comparisons between the particle layer and the
real snow samples.

If the radius of the sphere extended beyond the bounds of the layer, it would mean that there would
be fewer spheres capable of overlapping. This would in practise result in a greater concentration of
spheres being seeded along the edges of the layer and would not therefore be a true representation
of snow as this would presume some degree of homogeneity in terms of density throughout the
layer. To prevent this, cyclically closed loops were used, as in Stankevich (2007). This form of
wrapping is the method by which one side of the layer is treated as being adjacent to the other. As
such the seeding sphere was offset by the dimensions of the layer and re-evaluated for the purposes
of overlapping with previously seeded particles.

While the density of a snow will increase with depth due to compression by weight of the snow, as
the virtual layers are only one or two millimetres thick, it is can assumed that the change in density
over this range will be negligible. This can be seen from the results obtained by Kassalainen (2006).
Between the surface and 1cm there is only a minor increase in density.

Snow Density
0.35
4
0.3
L
<, 0.25
Eo 0.2 ¢
Z
‘a 0.15
] @ Snow Density
o 01 &
 J
0.05
O T T T 1
0 10 20 30 40
Depth cm

Fig.4.6. Graph indicating average snow density at depths. Kassalainen (2006)
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4.4 Infinite Regolith

As a layer represented just a small sample of what would be considered an infinite region of regolith

(or snow for the purposes of this work) it was important to account for rays passing through the

sample and being scattered out of the side of the layer. Rays leaving one side are transposed to the

opposite side of the layer and re-inserted. The reason for this approach is that the layer is

considered an isolated sample of typical regolith within an ‘infinite’ plain. As such it can be

presumed that for every light ray being scattered out of the sides of the sample layer, a light ray will

Fig.4.7. Coloured particles indicate where duplicates are generated as
part of the seeding process.

be being scattered into it.

To account for transposed rays
maintaining their characteristics
the entry point had to match the
exit point. By this it is meant that
if the ray was within a particle
that crossed a side boundary,
there would need to be an
identical particle on the opposite
side.

As a consequence, after wrapping,
a second stage replaces the
seeding sphere with an array of
spheres depending on the number

of boundaries being crossed. These spheres would be placed at the opposite boundaries. These are

Crystal semi- ———— s
major axis (pm) 1 | Seed Spheres Show Tables|
Failure Breakout 50 | Piot Points |

Layer X Dimension (mm) 25 [ Delete Data |

25

Layer Y Dimension (mm)

Layer I Dimension (mm)

Fig.4.8. As a first pass, a
radius of unity was used
and the dimensions of
the box were set
through iteration in
order to generate
approximately 100
spheres. This produced
on average 100
successful seeds prior to
failure breakout. This
equated to a volume
density 0.13, i.e. 0.13 of
the volume contained a
sphere
(100x4r1/3x25x25x%5).In
comparison, the
maximum density if the
spheres had been
stacked is 0.74.
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all seeded simultaneously and after checking for wrapping to prevent them detecting each other and
causing the seeding to fail.

A feature of this is that a single sphere will be duplicated once, if crossing a single boundary (grey
sphere in the diagram). It will be duplicated 3 times for a total of 4 spheres if crossing two
boundaries (blue sphere in diagram) and if the initial seed is at a corner of the layer it will be
duplicated 7 times for a total of 8 spheres (red sphere in the diagram).

4.4.1 Replacement of bounding spheres with crystals
A crystal file is essentially nothing more than a means of describing the locations of the facets of a crystal
(though by extension can also be used to describe the facets of multiple crystals). This is done by three
sets of data.

e Quantity of facets

e Number of corners of each facet (Vertices)

e The X, Y and Z coordinate of the corners (Vertex Coordinates).

In order to create a layer of crystals, each of the spheres is replaced by the data of the crystal file then
compiled into the appropriate format. First of all a crystal file of the dimensions appropriate to the
bounding sphere needs to be generated.

For example, a hexagonal crystal has 8 facets: two hexagons and 6 rectangles. There are therefore
36(=6x2+6x4) vertices.

The coordinates of the vertices for a standard upright hexagonal column can easily be calculated through
geometry.

B

[+]

a

4

4

4

4

4

4
-0. 860025388240814 -0, 500000000000000 0. 000000000000000E+C00
-0. B66025388240814 0. 500000000000000 0. 000000000000000E+000
0. 000000000000 000E+000 1. 00000000000000 0. 000000000000000E+000
0. B606025388240814 Q. 500000000000000 0. 000000000000000E+C00
0. B606025388240814 -0, 500000000000000 0. 000000000000000E+C00
0. 000000000000000E+000 -1, Q0000000000000 0. 000000000000000E+000
0. 000000000000000E+000  -1. 00000000000000 -2, 00000000000000
0. B66025388240814 -0, 500000000000000 -2.00000000000000
0. B606025388240814 Q. 500000000000000 —2.00000000000000
0. 000000000000000E+000 1. 00000000000000 —2.00000000000000
-0. B66025388240814 0. 500000000000000 -2, 00000000000000
-0. 866025388240814 -0, 500000000000000 -2. 00000000000000
0. 000000000000000E+000 -1, 0000000000000 0 0. 000000000000000E+C00
0. B606025388240814 -0, 500000000000000 0. 000000000000000E+C00
0. 866025388240814 =0. 500000000000000 -2, 00000000000000
0. 000000000000000E+000  -1. 00000000000000 -2, 00000000000000
0. B606025388240814 -0, 500000000000000 0. 000000000000000E+C00
0. B606025388240814 Q. 500000000000000 0. 000000000000000E+C00
0. B606025388240814 0. 500000000000000 -2.00000000000000
0. 866025388240814 =0. 500000000000000 -2, 00000000000000
0. B66025388240814 0. 500000000000000 0. 000000000000000E+000
0. 000000000000 000E+000 1. 00000000000000 0. 000000000000000E+C00
0. 000000000000000E+000 1. 00000000000000 —2. 00000000000000
0. 866025388240814 0. 500000000000000 -2, 00000000000000
0. 000000000000000E+000 1. 00000000000000 0. 000000000000000E+000
-0. 860025388240814 Q. 500000000000000 0. 000000000000000E+C00
-0. 860025388240814 Q. 500000000000000 —2.00000000000000
0. 000000000000 000E+000 1. 00000000000000 -2, 00000000000000
-0. B66025388240814 0. 500000000000000 0. 000000000000000E+000
-0. 866025388240814 —-0. 500000000000000 0. 000000000000000E+000
-0. 860025388240814 -0, 500000000000000 —2.00000000000000
-0.806025388240814 0. 500000000000000 -2.00000000000000
-0. B66025388240814 =0. 500000000000000 0. 000000000000000E+000
0. 000000000000000E+000 -1. 00000000000000 0. 000000000000000E+000
0. 000000000000000E+000 -1, 0000000000000 0 —2.00000000000000
-0. 800025388240814 -0, 500000000000000 —2. 00000000000000

Fig.4.9. Data for a hexagonal column (1x1) prior to being rotated. Note that the centre is offset such that the

column is entirely below the z-axis (last column of co-ordinates)




4.4.2 Centring origin within Crystal

The code to generate crystals was adapted from FORTRAN
code, translating it into MATLAB (as detailed below). This
produced crystals in the positive X, Y and Z axis. When
these were implemented into the main code, off-sets were
used to adjust bounding spheres. While having no obvious
detrimental effect on the code, modifying the original
crystal file structure, generating the crystal around the
origin rather than from a corner has simplified various
areas of the code by eliminating the need for off-sets and
simplifies improvements to the seeding routines.

4.5 Conversion of FORTRAN Crystal

Generation Code

The ray tracing program was designed to use data for a
single crystal. A FORTRAN program existed that generated
and rotated a single crystal based on parameters supplied
through prompts in a DOS window. As this project is
designed to use a range of crystals within a layer it is
unrealistic to either use this method or create many pre-
generated crystals from which to select from randomly. A
new program based on the FORTRAN code has therefore
been written for MATLAB. This has the advantage of
generating and rotating crystals as they are seeded.

The program generates hexagonal prisms. Choosing this
shape has advantages

15

Fig.4.10. Hexagonal column (1x1) after re-
orientation

Fig.4.11. Hexagonal column (1x1) after re-
orientation and centring code
improvement

over other shapes in
that by having a long
column length with
respect to radius, the
program can generate
needles. While by having
short lengths and large
radii, plates, another
common ice crystal,
could be generated. This
means that 3 common

types of ice crystal could

be generated from the
planar basal facets

one program. The

program also include

Fig.4.12. Reoriented hexagonal column with non- Hexagonal column with

oblique planar basal facets
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non-planar basal facets, i.e. 6 facets at the ends of the crystal that could either be pointing outwards

or inwards as well as oblique ends.

4.5.1 Data Output

25

20

Fig.4.13. Layer of hexagonal columns — pre-reorientation

The output data for the layer is assembled
from the accumulation of the three
sources of data; total facets, vertices and
vertex coordinates.

Example: For hexagonal crystals (with non-
planar basal facets), a box of twenty-five
randomly positioned crystals would have
the format 200 (25x8), representing the
total number of facets, followed by 25
strings of 6,6,4,4,4,4 representing the
vertices of the individual facets and finally
an 900x3 array detailing the coordinates of
the 900 vertices of the facets in 3
dimensions.

As the vertex coordinates generated by the crystal creation code are relative to the first vertex

coordinate, seeding the crystals into the layer is a case of offsetting all the vertex coordinates of the

seeding particle by the coordinates of the bounding sphere, taking care to account for the difference
in the centre of the bounding sphere and the coordinate of the first vertex.

4.5.2 Orientation

Clearly crystals are not uniformly
lined up within a snow sample and
as such each crystal has to be
oriented to some degree (as
explained below) at the point of
seeding. As the bounding sphere
covers the major axis of the
crystal, it is possible to rotate the
crystal within the three
dimensions without the possibility
of it then overlapping with another
crystal.

This has to be done at the point of

seeding rather than to each crystal
in the final array. The reason for

this is that where seeds are

Fig.4.14. Layer of hexagonal columns — post-reorientation

duplicated during the seeding process due to crossing a layer boundary each duplicate crystal has to

match the orientation of the original seed.
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Degree of randomness

As some images appeared to show that needle crystals could settle, forming layers (like the game

jackstraws), during the coding for random orientation an option was included that restricted the

Fig.4.15. Image suggesting settled orientation

http.//forum.xcitefun.net/microscopic-images-snowflakes-

degree of freedom of the prism in the
vertical plane such as in Fig. 4.15.

Three options were given that set the
range for the beta-euler angle.

Random (B= acos(1-29))
Settled (B= grt/10+11/2)
Flat (B=1t/2)

Where ¢ is a random floating point
number between 0 and 1.

Acos(1-2¢) in the random setting gives a

t49288.html

fully distributed range of orientations.

Using gmt for example, gives an even

Fig.4.16. Euler Angles
http://en.wikipedia.org/wiki/File:Eulera
ngles.svg

distribution across the limits of m, this does not equate
to a fully distributed range of orientations.

One advantage in defining the beta-euler angle was that
it allowed the bounding sphere to be replaced with
bounding cylinders that could be used to reduce the
height component of a bounding cylinder. Later
however this was reviewed in light of further images of
snow surfaces.

A request for information on the orientation of needles
in fresh snow to Jouni Peltoniemi appears to confirm
what was already suspected: the crystal orientation can
be assumed to be random. Fig.4.18 clearly shows that
many of the surface needles are oriented close to
perpendicularly to the surface. While this ultimately
required a rewrite, removing bounding cylinders, the
orientation function was left in (vestigial remain).
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It is however noted that

this vestigial remains may
still come in useful on
account of results being
dominated by a bright
spikes (when the sample
size is a problem — see
below). As the primary
purpose of the method is
to explore coherent
backscatter, glare can
easily swamp the data for
samples with a small
horizontal surface area.
Glare occurs when one or

more of the facets happens

Fig. 4.17. Jouni Peltoniemi image - many of the surface needles are oriented close to be aligned ?UCh that a
to perpendicularly to the surface large facet (with respect to

the overall dimensions of

the layer) happens

to be effectively
perpendicular to the
incident rays. These
can be seenin
nature when
looking at snow.
Despite a wide

expanse of white,
the snow appears to

twinkle as the head
is moved. A single
crystal of snow can
suddenly ‘outshine’
the surrounding
snow.

The glare can be
seen in the Fig.4.19

Fig.4.18. Enlargement of above image

for a sample with

layer dimensions of 0.5mmx0.5mmx0.2mm and rounded hexagonal columns with dimensions
0.1mmx0.05mm. The horizontal line y=0 corresponds to the scattering angle range of 170 to 180
degrees. The black & white scattering image is purely external reflection. This image is dominated by
the white spot just off-centre produced by a facet aligned similarly to the one indicated by the red
arrow in the render of the crystal file.

32



Fig.4.19. Glare in output is probably attributed to end facet (indicated in render with a red arrow) oriented towards
observer

While it is understood that limiting the rotation in the Z axis ultimately means that the layer is not a
true representation of a snow layer, it will reduce the potential for this sort of glare and theoretically
allowing for better observation of the coherent backscatter phenomena.

The size of the sample however poses problems in its own right. With relatively few surface crystals
(representing certain crystal orientations)contributing to the reflection, it means that the pattern
will be dominated by individual reflections rather than smoothing out as each reflection contributes
only a small amount to the overall backscatter pattern.

4.5.3 Removal of Seeds outside a Layer

As indicated above, a bounding sphere that extended
beyond a layer boundary automatically generated the o ~
corresponding duplicate spheres (and these in turn had f .\"x_ i
to be tested in order to determine if further spheres ...-'“ "hr"
were duplicated). As part of the rotation function, a ' '
feature had to be added that allowed for the removal [ ] ,."'
of crystals that had become positioned outside of the
layer boundary. While the centre of the initial bounding N
sphere would be within the limits of the layer, any ——

duplicate will have their centre outside of the layer
boundary. As a consequence, the orientation of a

crystal could result in all points of a duplicate crystal
existing outside of the layer boundaries.
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Fig.4.20. Intersection of corner of layer
with hexagonal column indicated in grey




The removal however is not perfect, in that it is based on the vertices of the duplicates rather than

checking if any of the planes of the facets intersect the bounding box formed from the layer

boundaries (this would then require a second check to determine if any of the edges of either the

facet or the layer bounding box intersected). This approach however was expedient as the only case

where it is possible to fail is where a facet formed from the vertices crossed a boundary of the layer

even though all the vertices lay outside of the layer such as over a corner. It is however something to

be aware off and an area to improve along with the use of convex hulls to solve the density issue

(see below).

4.5.4 Random Sized Spheres

Based on Baran and Labonnote (2007), ice crystals of a range of sizes
are typical within any sample of snow. As such the single sized seed
sphere had to be replaced by a randomly generated size. Initially a
simple random generation between a maximum and minimum sphere
size was used. This however meant that there were definite cut-off
points in the size and there was an even distribution of crystal
dimensions. As such this was deemed to be highly unrealistic. This was
demonstrated by One (1968) in field studies of ice crystals in clouds.
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Fig.4.22. Ono (1968) — showing the relationship of length along the
major and minor axis in various columnar ice crystals (unfilled circles
represent hexagonal columns)
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Fig.4.21. Hexagonal Column,
Ono (1968)

While a range of ice crystals
were evident it was not an
even distribution between
the limits. In the graph below
(looking at the unfilled
circles), it is clear that the
greatest concentration of
crystals is around major axis
130um and minor axis 50um.
While not being able to
expressly confirm the true
distribution profile of the
snow samples of Kaasalainen,
a dispersion profile was
applied to the seeding
process.

As such the program was
modified in order to include
an average sphere size and a
3sigma parameter. This
allowed the spheres to have
a random radius but within a
distribution bell-curve
peaking at most common
radii. 3sigma means that
99.7% of all randomly
generated ranges will be
within this range.



The average length and the 3sigma point for both semi-major and semi-minor axis, corresponding to
length and radius of hexagonal columns could be set manually in the user interface.

Radius

O L
0 100 200 300 400

points are obviously outside of this range.

L L 1
500 600 700 800 900 1000

Seed No.

Fig.4.23. T he plot is a plot of 1,000 normally distributed points(seeds) where 1 is the mean and 0.25 is the 3sigma
standard distribution. In this case 99.7% of all points will be within 0.25 and 1.75. In the plot it can be seen that only a few

4.6 Density

A density parameter was included in the output file. This was initially determined as the
approximate total volume of crystals against the volume of the layer accounting for the density of

Fig.4.24. 1 seed and 3 duplicates only accounts for
1 full area, as indicated in blue shading

crystals (the value of the crystal density can be
set in the interface and is reported in the output
file).

Where crystals crossed a boundary, duplicates
are off-set by the dimensions of the layer and
seeded across the opposite boundary. A crystal
for example that had a third of its volume outside
a boundary would be duplicated. The duplicate
would be off-set and seeded on the other
boundary so that only a third of its volume lay
within the boundary. A feature of this is that
though a crystal may end up being seeded 8
times, its total contribution to the volume within
the boundaries of the layer would be only one
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crystal. The 2d example below shows the coloured parts of the duplicated crystal that effectively

contribute to the layer density.

In the case of the hexagonal columns having non-planar basal facets, no account of this addition or

subtraction to the overall density has been made. The reason for this is that as the non-planar facets

0
0.5

5
10
15

E
0.4

;
0
T4

Fig.4.25. Basal obliques account for true
density less than reported density

end may be indented or filled it is assumed that their
contribution to the volume will be negligible.

Even taking into account both the indents,
boundaries and the density there is however a
feature that has not been taken into consideration,
this being the basal obliques.

These will ultimately mean that the density reported
will always be slightly greater than the true density if
these have been included in the column generation
program.

For example, if the length(L) to radius (r) is 20:1 and
maximum angle of an oblique is 45°, a third of the
crystals will have no oblique ends, a third will have
one and a third will have 2. On average, a crystal will
have 1. The average angle of the oblique will be
22.5°. Applying geometry to the part of cross section
area containing the cylinder axis (removed and

remaining) and the remaining area generates the following:

deltal = 2xtan22.5

Where deltal is the part of L covered by the oblique end.

3r
where x varies between—and r

1- deltaL]

VRemaining =V, [ 2L

Approximating for tan22.5 produces and substituting for L and r

VRemaining ~ 0-99‘/0

Even when columns with diameters equal to their heights, the fraction remaining is 0.8.

Oblique basal facets were not used in generating hexagonal plates.
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4.6.1 Low Density

Initially, the premise was to model hexagonal columns as per the simplest ice crystals studied by
Baran and Labonnote (2007) where the length of the column was approximately equal to the
diameter, i.e. L = 2r. This would mean that the semi-major axis of the resulting crystal would be
approximately equal to the semi-minor axis. As a consequence, using bounding spheres would be a
reasonable means of achieving desired densities for the layer.

As development of the code progressed, it became clear that for the layer model to have any real
use in modelling planetary regolith, it would have to be able to generate layers consistent with field
observations of real snow layers. Generation of layers consistent with the observations of
Kaasalainen (2006) was undertaken. Three samples in particular were chosen on account of them
being fresh surface snow.

Date Mean snow/grain size Air temperature Density Thickness K0y 10) HWHM

mm gml™! cm

Surface — new
23 Mar Columns, 0.1 -5.0 0.08 4.0 0.32 1.09 0.1

Fig.4.26(a). 2004 samples

\Dale Snow, grain size Air temperature Density o) 1o} HWHM

mm C gmL™!

Surface — new
4 Mar Hexagons, 0.1-1.0 —4.0 0.07 017 1.41 0.6
7 Mar Needles, 0.3 -1.0 0.10 0.15 132 0.1

Fig.4.26(b). 2005 samples

This is important as

Layer Parameters

Hexagonal crystals crystal structure is

Rejections 500 most likely to be

Crystals Seeded 47 retained at the

Crystal Iength (100+15)um surface while the

Crystal radius (20£3)um )

Max indent 10% snow is fresh. In

Total Crystal Volume terms of the layer
3

0.04469mm samples, it meant

Density 0.00248g/ml

that pristine crystals
such as those

represented in the

Fig.4.27.Needle layer adjacent image could

be generated.
Compression and aging of snow is likely to corrupt the individual ice crystal structures through three
processes — simple breaking of the delicate crystals, partial melting and refreezing and sintering.
Sintering is where the crystals amalgamate with other crystals. In all cases the crystal shape will be
modified. This however is where the inherent weakness in bounding spheres became apparent.
Where one axis was large compared to the other (long, thin needles and wide thin plates), the actual
mass of the crystal was effectively small compared with the volume of the bounding sphere. As a
consequence, the density of the layers produced was much lower than that of the samples.
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Bounding Cylinders

Efforts to decrease bounding
volume included replacing the

sphere with a cylinder. This was 5
based on the assumption that 5 :
settling crystals would be closer to e e

horizontal. A short cylinder would
therefore have lower volume than
a sphere of diameter equal to the
long axis of the crystal. Though

increasing density marginally, they ot

were eventually rejected as the 5

snow samples examined reveals

random crystal orientation. ] ) ] ) )
Fig.4.28. Bounding cylinders used to increase density based on theory

Increasing Breakout-point that needles will settle rather than maintain random orientation

A second method was to simply increase the breakout-point for the seeding process. This meant that
there was a greater chance of generating a bounding sphere capable of fitting within the potential
volume at a random location within a layer. An interesting consequence of this is that while the
overall density does not significantly increase, the quantity of seeded crystals before rejections
attain breakout-point is significantly higher. The reason for this is that as seeding continues, there is
a higher likelihood that a sphere at the larger end of the random distribution radii will be rejected.
Towards the end of the process, virtually all spheres and therefore crystals will be at the shorter end
of the normal distribution.

Layer Parameters
Hexagonal crystals
Rejections 5000
Crystals Seeded 305
Crystal length (5£1)um
Crystal radius (30£15)um
Max indent 0%

Total Crystal Volume
0.39974

Crystal density
0.91670mm’

Layer Density 0.04581g/ml

i

Fig.4.29.Hexagonal Plates with high rejectionparameter
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This can be seen from the data:

Crystal Seeded Boung;ndgijfhere Crystal Seeded Boung;ndgijfhere
1 0.45433 296 0.02849
2 0.45433 297 0.02417
3 0.13589 298 0.01966
4 0.32149 299 0.03084
5 0.18063 300 0.09864
6 0.03832 301 0.02312
7 0.28602 302 0.11493
8 0.28602 303 0.02282
9 0.28602 304 0.06993
10 0.28602 305 0.07031

03

0.2

0.1 —V

|~ v

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

~Nom

Fig.4.30. The graph shows the weighted average of
the radius (over 10 seeds) in mm against seeding

This means that the actual distribution
deviates from a normal distribution. The
reason for no significant increase in the
density is that the overall mass contributed by
the smaller crystals is relatively small
compared to the mass of even a single large
crystal seeded early on in the process.

Presuming plates:
3
V= Ex/?rZL

Volume of Seed1 =0.022328mm? (where
r=0.45433mm & L=0.05mm)

Volume of Seed350 = 0.000535mm? (where
r=0.07031mm & L=0.05mm)

This meant that the first crystal seeded was over 40 times the volume of the final crystal seeded (and

this was by no means the smallest).

The example of the seeding process shows that even after 50 crystals (and their duplicates) have

been seeded, the average radius being accepted has fallen by 50%.

While on the surface this could appear to be a major failing in the seeding process, it has to be taken

in line with the samples being examined. The photograph (Fig.4.31) of hexagonal plate crystals (Ono,

1969) is a good example. While two distinctive hexagonal plates are present with diameters close to

200um, there are many irregular crystals in the sample. The authors state that the method of

collection meant that ‘breakage of the ice crystals was reduced, though not entirely eliminated’. It

cannot be determined as to what degree the irregular crystals are a function of the collection

method rather than naturally occurring. While the samples studied by Kaasalainen were surface

samples and therefore presumably less likely to suffer damage due to collection, there is no
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indication in the data as to the
relative abundance of broken
and irregular crystals present
in the samples.

Fic, 7. Hexagonal plate ice crystals, a., which had begun to
sprout dendritic growths at the corners and, b., without sprouts
at corners, Observed simulianeously at about - 15C, 15 October

1966.

Fig.4.31.0no 1969.

4.7 Rounded Edges
As has been commented on above, an issue with using precise hexagonal columns (as needles,
plates and columns) is they are pristine unlike crystals that have undergone sintering, dendritic

10 f

15

10

15 1

05

0.5
104
Fia.4.32. Pristi del of h | Fig.4.33. Riming and dendritic growth evident on ice
ig.4.32. Pristine model of hexagona columns (Ono, 1969)
column with indented oblique basal
planar facets

growth, riming or have been broken. As can be seen Fig.4.33. even these hexagonal crystals with
indents are far from pristine compared with the model generated version.
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Recent developments have produced hexagonal columns with
rounded edges. This works by assigning a rounding factor
between 1 and sqrt(3)/2, indicated by the green circle in Fig.4.34.

A rounding factor of 1 corresponds to the circumcircle (dotted
line), i.e. no rounding while, sqrt(3)/2 corresponds to the inner
circle (red), i.e. complete rounding. Next, the intersections points

between rounding factor
circle and hexagon are

calculated (arrows). Then a A7 .,

number of new segments /! M,

are chosen and the Pl
Fig.4.34. Green circle indicates corresponding number of ;
rounding factor (arrows indicate

intersection points) points on the green circle

between the two arrows are Lok £

calculated. o o

The same method is applied for perpendicular cross section

apart from using ellipses instead of circles (Fig.4.35).

Fig.4.35. Ellipses used when
By using rounded edges, it was possible to simulate more dealing with perpendicular cross

samples collected by Kaasalainen, specifically samples taken sections

from snow that had partially melted and been refrozen.

As the program only generates a crystal file when there is a successful incorporation of a bounding
sphere into the layer, advantage was taken of this recent development. Seeding a layer in which the
limits of the hexagonal columns were set and

had no random distribution, allowed a pre-
generated crystal file of a hexagonal column
with rounded edges to be substituted. The
same process of rotating and duplicating was
still applied.

By introducing a large number of
comparatively small facets, features such as
coherent backscatter are expected to become
more readily observable.

Fig.4.36. Image indicating rounded ends
http://emu.arsusda.gov/snowsite/selected/9206.jpg
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In the raytracing program
individual rays have a finite
diameter which is set as an
input parameter. As these
individual rays are traced, any
child ray of the ray leaving the
layer has its E-field calculated.
This E-field corresponds to the
far field diffraction pattern at
the circular aperture

appropriate to its diameter.
The square of the sum of
spatial E-field contributions of
all rays passing through the
same facets is an

approximation of the far field
diffraction pattern of a larger

beam including all the Fig.4.37. Model layer of hexagonal columns with rounded edges
individual rays. Ray tracing

needs to be completed before

the diffraction pattern is calculated, because all E-field contributions at a particular scattering angle
need to be added. This includes rays leaving the layer from different crystals. By having more facets,
there are a greater number of child rays contributing to the far field diffraction pattern, thereby
reducing the dominance from individual facets and also increasing the amount of coherent
backscatter, i.e. a greater number of spatial E-fields.

4.7.1 Influence of the size parameter on coherent backscattering

As smaller apertures have
wider diffraction patterns
(stronger E-fields at larger
scattering angles), an
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approach to increase

coherent backscatter was to
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increase the wavelength of
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(see section 2.1). As no

Fig.4.38. N I limit L. A
9 ormal limits of change to refractive index, &

diffraction.

absorption by the crystals is

made, this equates to changing the size of the crystals with

. - Fig.4.39. | d di ti
respect to the wavelength of the rays without rewriting the "9 ncreased diffraction

tal fil d i | increases possible paths
crystal files and generating new layers. .
Y J & Y contributing to coherent

backscatter.
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The approach increases the number of ray-paths that can contribute to coherent backscatter (see
2.2.2 for explanation of coherent backscatter). The two diagrams indicate how increasing diffraction
(between Fig.4.38 and Fig.4.39) increase the possible range of paths a ray can follow. As only some
of these have the potential for producing coherent backscatter by conjugate paths, (rays can follow
the path in both directions and still reach the observer) increasing diffraction produces more paths
with the potential to contribute.

4.8 Testing crystals within overlapping bounding spheres

While bounding spheres allow for quick testing for potential overlap before seeding a crystal, when
the crystals being seeded were needles or hexagonal plates, crystal volume to bounding sphere
volume was very small resulting in very low layer density. Rather than rejecting a bounding sphere at
the time of seeding, should it overlap with any previously seeded spheres, a method was devised to
test the crystals within the bounding spheres for overlap prior to seeding.

The test to determine whether two crystals intersect requires that each facet of the crystal to be
seeded is treated as a polygon in 3D space. The lines forming the contours (boundaries) of the facets
forming crystals within the bounding spheres that overlap the seeding sphere are tested against
these polygons in order to determine whether there is an intersect. If they intersect, the crystal
being seeded is rejected and its bounding sphere is removed from the bounding sphere array. If the
crystal does not intersect with previously seeded crystals, it is added.

As the bounding sphere function occurs before the crystal generation and replacement function it is
impossible to reject the sphere at this stage based on the crystals. As such an array of overlapping
spheres is generated to be used in the crystal generation and replacement function. By the same
token, it would be computationally expensive to always proceed with an array of overlapping
spheres irrespective of the quantity of overlapping crystals. As a compromise based on empirical
testing of processing time against size of overlapping array, the quantity was set to a maximum of 5
overlapping spheres.

As a sphere could overlap 5 others at a corner of the layer, this equates to 40(=5x8) facets to test for
intersection.

When a crystal is added (as the first crystal to be seeded in a layer always is), as well as storing its
vertex and facet data, it is also added to the line equation matrix. This is a matrix consisting of the
equations for every edge that forms the crystal (along with its associated bounding sphere), i.e. 3
equations of a straight line in the x, y and z axis (parametric representation).

At the time of generation of the crystal to be seeded, the equation of the plane corresponding to
each facet is generated (for the crystal and all its duplicates) from three points.

While methods could be employed to reduce this based on the quantity of duplicate lines within a

hexagonal column and associating in the case of duplicates treating bounding spheres individually,
the extra checks to separate them are likely to be as computationally expensive as dealing with the
entire matrix in a single pass.
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Each of these triangles is initially treated as an
15

JE— infinite plane in order to determine where on

1 +++++ s ] the plane each and every line forming a seeding

05t § crystal crosses it, i.e. the cross product of the

P | plane and the line is determined (or ignored if

05k

4Fi
i
7
§ the line and plane are parallel). This generates
+ ) . . . .
J%q an array of intersection points between the lines
;
.

, and the planes.

1540 i 4
- . .

g, A convex hull is generated for the seeding
B PR

crystal (and its duplicates). A convex hull in this

e ‘ ‘ . . .
2 i 3 0 0 = ! case is effectively a bounding polygon

circumscribing all the points that form the

Fig.4.40.Green line forming convex hull around shape

formed from red crosses object.

In the case of a three dimensional object this is
formed through Delaunay triangulation.

The next step is then to determine if the point of
intersection lie within the bounding limits of the
Delaunay triangles (see below).

The operation is however speeded up as the
intersection points for all lines and planes are
tested against the entire convex hull formed
from the entire array of Delaunay trianglesin a

? : 05 single function.
This function returns an array of the lines that
intersect the convex hull of the crystal. If the
Fig.4.41. Delaunay triangular surface indicated in red array is empty, then it is confirmed that there
forming the convex hull for a hexagonal column. are no intersection points within the crystal.

Note that for crystals with large facets such as plates, the process has to be two way, insomuch as
the planes of the seeding crystal have to be tested against all the lines of the previously seeded
crystal (this is a step that can largely be omitted for needles and columns). The reason for this is that
there is a strong possibility that a previously seeded crystal may have

a facet through which a line passes even though no lines of the p
already seeded crystal pass through a facet of the seeding crystal. A B

Determining if a point is within a bounding triangle

A triangle is defined by the points ABC and therefore lines AB, BC and
CA. Each of these lines splits space such that one half is entirely

outside the triangle. A point inside the triangle must be below AB, left ¢
of BC and right of AC. Further, determining if the point is on the
correct side of the line is achieved by determining the cross products. Fig.4.42. Determining if a point

In the case of the cross product of (OB-OA) x (OP-OA), the vector will

is within a triangle
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be pointing out of the page, whereas the cross product (OB-OA) x (OP’-OA) will be a vector pointing
into the page. In the above example the vector from (OB-OA) x (OC-OA) also points into the page. As
such it can be seen that p’ is below the line potentially within the triangle while p is above the line
and therefore outside the triangle. In all cases (OB-OA) x (Op’-OA) has the same direction as (OB-
OA) x (OC-0A), and therefore is potentially within the triangle. It is just a case of doing the same
analysis from the perspective of the other edges of the triangle. If all results prove positive then the
point p’ is within the triangle.

4.8.1 Code Speed

As detailed above, the test for convex hulls was a feature added to the code close towards the end
of the course as a direct result of the inability of the bounding sphere model to achieve high
densities equating to those studied by Kaasalainen without compromising other aspects such as
average grain size. The improvement relied on not immediately rejecting a bounding sphere if it
overlapped previously accepted and seeded bounding spheres. It would instead create an array of
bounding spheres being overlapped. A crystal would still be created for the potential bounding
sphere and from this the equations for its edges and facets would be determined.

For needles (crystals with relatively small facet dimensions to surface area), the equations for all the
facets in all the crystals (where a bounding sphere produced duplicates due to crossing a layer
boundary) were used to determine an array of intersect points against all the edge equations for all
the crystals (and appropriate duplicates) belonging to all the previously seeded bounding spheres
with which there was an overlap.

This method can only be described as ‘quick and dirty’ relying on processing power to generate a
very large array of intersection points.

Consider a bounding sphere that due to crossing a layer boundary has produced 4 duplicates. For a
hexagonal column, there are 8 facets per crystal which means 32 facet equations. As each facet is
treated individually (so that it is known which vertex is connected to which), each crystal also has
36(=2x6+6x4) edges (equating to 108 equations for the lines in three dimensions). In this example
there are therefore 144 edges.

If the bounding sphere(s) overlap 8 other spheres (which is not unusual), it can be seen that to
determine the intercepts of all the facets of the seeding bounding sphere against all the edges of the
previously seeded 8 crystals within the bounding sphere requires: 9,216(=32x36x8) solutions.

The reason why this was implemented in such a fashion was that at this time vertex data was stored
independently of bounding sphere and there was no simple means of distinguishing between the
duplicates. This was because up until this point, this data was simply not necessary as part of the
bounding sphere design as once a sphere had been accepted, the crystal data was simply added to a
growing array.

The first objective of speeding up the code was therefore an overhaul of how the data was stored.
Each bounding sphere was updated with its duplicate number (set to 1 for the original crystal).
When determining overlaps between seeding bounding spheres and previously seeded bounding
spheres, an array could therefore be generated specifically determining which bounding sphere,
duplicate and which (if more than one bounding sphere being seeded) was being overlapped.
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In this case there are 10 overlapping
overlapCrystalArray Columnl — overlapping situations, which means that for
bounding sphere hexagonal columns, there are

1 1 1 2,880(=10x36x8) interception points to

1 1 2 Column2 — duplicate of the test compared with

1.2 3 bounding sphere being 160,512(=32x8x36x6) under the

1 2 5 overlapped with previous method.

1 3 4

1 3 6 Column3 — duplicate of the

1 4 7 seeding bounding sphere

1 4 8 responsible for the overlap

5 1 3

5 2 1
Fig.4.43.

4.8.2 Methods Pursued in Optimisation

MATLAB is a designed to deal with arrays in preference to loops. In the following example (Fig.4.44),
two sets of code that generate the same results are presented. The first sample uses a standard ‘for
loop’ while (though the data is pre-allocated to an array) the second uses built-in MATLAB
functionality to process the entire array of entries (effectively) simultaneously:

tic %tic-toc starts and stops the clock
Bnv = zeros(size (A)); % We pre-allocate to level the playing field
for i=1l:size (A, 1)
for j=l:size(A,2);
Bnv(i,3) = log(A(i,3));
end
end
nonvec = toc;
tic
Bv = log(A);
vec = toc;

assert (isequal (Bnv,Bv)) ; Fig 4.44
ratio = nonvec / vec T

ratio =
33.0086

As can be seen, making use of MATLAB'’s ability to process arrays of data can lead to significant
optimisation. The approach was used to replace this code:

for g=(l:size(overlapCrystalArray))
for p=(l:size(planeEquation))
for j=(l:size(potentialOverlapLineEquationMatrix))
if (overlapCrystalArray(q,l)==potentialOverlapLineEquationMatrix(j,1))...
&& (overlapCrystalArray(q,2)==potentialOverlapLineEquationMatrix(j,2))...
&& (overlapCrystalArray(q,3)==planeEquation (p,2))
newfunction=subs (planeEquation (p, 3),P,potentialOverlaplLineEquationMatrix(j,3:5));
t0=solve (newfunction) ;
pointl=subs (potentialOverlapLineEquationMatrix(j,3:5),t,t0);
pointl=double (pointl) ;
intersectArray=vertcat (intersectArray,pointl);

end Fig.4.45.

end

end
end
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with this:

bigArrayI=repmat (potentialOverlapLineEquationMatrix,size (planeEquation));

disp(' big arrayIl')

bigArraylI=repmat (planeEquation,size (potentialOverlapLineEquationMatrix)) ;

disp(' big arrayIl')

bigArrayIII=[bigArrayI(:,3:5) bigArrayII(:,3)]

disp (' big arrayIII')

disp('new function')

[newfunctionII]=subs (bigArrayIII(:,4),P,bigArrayIII(:,1:3))
[t0]=solve (newfunctionII)

Fig.4.46.

for t=(l:size(bigArrayIII))
pointl=subs (potentialOverlaplLineEquationMatrix(:,3:5),t,t0);

end
pointl=double (pointl)
disp (' big arrayIII function solving')

Despite the benefits of using arrays, it was found that this method did not improve the speed of the
code. Further investigative work in this field is therefore necessary.

4.8.3 Reciprocation of Convex Hulls

For needles and even columns, individual facets are relatively small with respect to the overall
volume. Where one crystal intersects another during the seeding process they invariably do in such a
way that at least two facets are overlapping, i.e. in the case of the seeding crystal at least one of its
facets is intercepted by the edge of a previously seeded crystal. In the case of a hexagonal plate,
where its end facets are account for a very large proportion of the overall surface area, it can easily
be the case that the edges of the seeded crystal all lie outside of the facet of a previously seeded
crystal even though the facet itself is intercepted by the lines. In these situations the test for
interception has to be both ways, i.e. testing all the edges of one crystal against all the facets of the
other and vice versa.

It was discovered post submission that there was in fact an error in the code which meant that this
test (though commented out for speed) was in fact faulty due to incorrectly determining the array of
vertices from the previously seeded crystals.

The reciprocation convex hull code is only used in the successful pass through the convex hull test
for obvious reasons.

The other issue with hexagonal plates concerns their individual surface areas with respect to their
volume. Once a density of 0.015g/ml is reached there is a notable increase in overlapping and
therefore convex hull tests which often lead to rejection.
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4.9 Improvements and Alternative Approaches

A considerable number of minor modifications to the code were made. Many of these simply
replaced older routines and functions written in the early stages of development due to improved
understanding of MATLAB and clearer objectives. They also fixed potential errors. The more relevant
ones are noted below.

4.9.1 Improved Layer Data Record

The quantity of partial and whole crystals within a layer was recorded as the quantity of crystals
seeded. This data was refined to include the quantity of crystals and the number of unique crystals.
This makes for better comparison of data when considering the relative surface area of the layer
compared with the volume, i.e. where the this is large there will be a much greater proportion of
duplicate crystals.

The data record was also upgraded to record information about its corresponding bounding sphere
and whether it was a duplicate. These are reported as seed and particle number.

4.9.2 Output Irrespective of Termination

An option that will undoubtedly be added to this is to generate and a new layer file after a set
quantity of crystals are successfully seeded. This will cost insignificant extra time though will ensure
that even the termination of the program due to time limits, the layer generated up to this point will
at least be saved.

4.9.3 Tetris Model
Tests were carried out after modifying the code to generate layers following the ‘Tetris’ principle.

Bounding spheres are initially set with a
displacement from the bottom of the layer equal to
the thickness of the layer. This displacement along
the Z axis is then reduced by a set amount. At this
new Z displacement, there is a bounding sphere test
against all previously seeded bounding spheres. If
there isn’t an overlap with any previously seeded
spheres, the Z displacement is again reduced and the
process is repeated until either the Z displacement is
zero (the centre of the bounding sphere is at the
bottom of the layer, or there is an overlap.

Where there is an overlap, the process moves onto
the convex hull test to determine of the crystals
within the bounding box overlap. Where this is the
case the crystal is then seeded at the previous step.
Where the bounding sphere reaches zero
displacement without overlapping another sphere,
the crystal is then seeded at the bottom of the layer.
In theory, the primary benefit of this model is to

ensure that every bounding sphere adds to the layer

whereas in the previous method, the convex hull test Fig.4.47. Vioid between 1 and 1.5 generated

can lead to the seed being rejected. due to the bounding sphere of the circled
crystal.
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4.9.3.1 Issues

There were two issues with this approach:
e Modification of original code.
e Generation of voids.

4.9.3.1.1 Modification of Code

In the original code, once a bounding sphere had been accepted, the next stage of the process was
to generate all the necessary facet plane and line equations for the crystals along with all the vertex
data. This was initially generated as a single pass into temporary arrays. As a consequence of the
changes, it was not sufficient to merely change the bounding sphere locations. The line and facet
plane equations along with the vertex data had to be re-derived (this method was preferred over a
second temporary array for the data). This caused issues initially on account of resetting various
arrays within loops while previously these had simply been dropped and called each pass.

4.9.3.1.2 Generation of Voids

Testing this method resulted in the creation of large voids within the layer. These are generated
when a large horizontal crystal ‘rests’ on top of a vertical crystal or group of crystals that have
themselves stacked up, thereby ‘roofing’ them.

A method of solving this is to continue to the downward steps of the crystal, retesting the convex
hull, while reserving the last point at which it passed the convex hull test and therefore be seeded.
This will be explored further. If this method is employed along with seeding until a specific density
has been reached, it is expected that:

e large crystals may still be rejected as they cannot be seeded at any point in their descent.

e Smaller crystals will eventually dominate, thereby decreasing the average crystal dimensions

as per early approaches based on ‘termination after a specific number of rejections’.

The decision is therefore whether to terminate the seeding process at densities lower than specified
if the average crystal size drops below a given threshold. The simplest mechanism for achieving this
is through the reintroduction of the maximum number of rejections before the code is terminated.
This is based on the probability that seeds rejected will lie within the upper radius range of the
standard deviation curve.
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4.10 Ray Tracing Program

The program works by tracing the paths of beamlets directed perpendicularly at the surface of the
layer, through a series of refractions and reflections. Fraunhofer diffraction is accounted for only
when the ray leaves the layer and, subject to the ray trace not being terminated for a beamlet due
to limits placed on the starting parameters, the scattered ray will end up exiting at an angle to the
incoming ray. The energy of the ray is distributed over all angular bins according to the far field
diffraction pattern. The final energy in each of these bins is determined in order to generate graphs
representing the scatting pattern generated by the layer.

The scattering program has input parameters corresponding to:

e Layer File Name

e Number of Layers

e Wavelength in microns

e Real part of the refractive index of the crystals

e Imaginary part of the refractive index of the crystals

e Maximum number of facet interactions per incoming ray
e Maximum number of total internal reflections

e C(Crystal distortion

e Edge length of square

Layer File Name
This simply refers to the file generated by the layer program. The scattering program imports this

file, extracting the data it needs.

Number of Layers

As the crystals are permeable to light and as not all the rays will be scattered back out of the surface,
increasing the number of layers above 1 means that rays that pass through the first layer are then
inserted into a second layer (actually they are re-entered into the first layer with their vertical co-
ordinate offset by the thickness of the layer). This increases the degree of scattering.

Wavelength in Microns

This is wavelength of the rays being used by the scattering program. While approximately the same
wavelength as that used by Kaasalainen (they used 632.8nm He-Ne laser)was appropriate for
developing virtual analogues, a range of wavelengths were employed for purposes simulating
smaller crystals and for testing if coherent backscattering increased due to stronger diffraction.

As diffraction is based on the ratio of wavelength of the incident light to the size of the facet (acting
as an aperture) and particle it belongs to (the diffraction patterns of the individual facets add up to
the diffraction pattern of the particle), modifying the wavelength was a simply means of modifying
the size of the crystals without having to generate a new layer.

In the case of the improved seeding sample, the wavelength was increased in order to widen the
backscatter peaks and observe the increased coherent backscatter.
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Real Part of the Refractive Index

As the layers were simulating water ice, the real part of the refractive index was set to 1.31.
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Fig.4.48.Refractive Index of Water — Real Part

Imaginary Part of the Refractive Index

Also known as the extinction coefficient, representing how much energy of the ray is absorbed as it
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Fig.4.49. Refractive Index of Water — Imaginary Part
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passed through ice. This is defaults to 1.04x10®, for 630nm.

Maximum Number of Ray-Facet Interactions

This sets the maximum number of interactions with crystal facets calculated for the incoming ray
and its descendents. This is used to determine the raytree. The raytree contains the incident ray and
all rays descending by reflection and refraction at crystal facets up to the maximum number of ray-
facet interactions providing that the energy of the descendent ray is greater than 10™° times that of
the incident ray, at which point the computation stops. If the number of interactions is set to 1 then
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there are 2 paths (the reflected and refracted path), following the interaction. Only external

reflection is accounted for (as the refracted path never reaches a ‘detector’. If the number of

interactions is set to 2, external reflection and transmission at the next facet are accounted for.

The number of potential paths is therefore 2*(maximum number of facet interactions). A standard

setting of 10 means that a raytree will have a potential of 1024 (2210) termination points. In all

probability the number of termination points will be much lower as for a start, reflection from the

first interface will in all likelihood never enter the layer (unless the facet happened to be at a very

oblique angle to the incident ray) and will instead undergo diffraction (and therefore cover the

complete range of angular bins).

Once the paths have been determined, the E-field amplitude matrix at all interactions is registered

0&1

ok

Fig.4.50.The low density of this needle crystal
layer will account for few interactions by rays
before leaving the layer.

down the raytree until the end points. Rays exiting
the layers are registered in bins distributed around
the layer. These record the amplitude matrix of the
E-field in the far field. Irradiance is then calculated
from the contributions of all E-field amplitudes
(accounting for phase).

For each incident ray, descendent rays are only
calculated up to the set number of interactions. If
for example initially there was 500,000 rays and
none left the layer there would be approximately 5
million raypaths after the first pass. As each of
these would then form new branches, it is
theoretically possible for there to be 5 billion rays
to trace.

In theory this will eventually decrease as the rays leave the layer. In the adjacent image of needle

crystals, it can be seen that

from the top view, the crystals
only account for a modest
amount of the projected
surface area. The vast majority
of incident rays will therefore
pass through the layer. Even
stacking multiple layers will not
alter this as the layers are
directly above each other. The
alternative is to increase the
depth of the layer, thereby
increasing the likelihood of a
ray striking a crystal rather than

passing through the layer.

Fig.4.50. A dense layer of rounded hexagonal columns will lead to very

large raytrees.

Increased depth to the point
where a ray is incapable of
passing through a layer without
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encountering a crystal has its issues. Under these circumstances, the number of rays in a raytree
starts to increase significantly to the point where the program terminates due to processing time
constraints before completing the ray trace. This occurred for the round crystals where the depth
was sufficiently deep so as to ensure that virtually all rays generated their complete raytrees.

Maximum Number of Total Internal Reflections

This is the maximum number of total internal reflections that will be followed before the program
terminates the ray. Termination will essentially increase the lost energy, energy unaccounted for by
the program. If set too low then it will leave too much energy within the layer as the program
terminates. This can lead to an unrealistic result. If set too high and there are crystals that generate
a large amount of total internal reflections due to the angle between facets, this can cause increases
in the time requirement to run the program.

The default is 100. This should give sufficiently high enough opportunity for the ray to leave the
crystal while keeping running times as efficient as possible.

One of the features of the program is to record the missing energy. This is the energy that has not
left the layer and has not been absorbed (as rays leaving the sides of the layer are re-entered into
the layer). Where absorption by crystals equals zero, this is the energy lost through termination of
the ray after 10 ray-crystal surface interactions (and any, if any rays that undergo more than 100
total internal reflections).

Crystal Distortion

This represents the degree of irregularity to the surface of a facet. It corresponds to random chance
that the facet will be treated as off its designated alignment for the purposes of the
reflection/refraction of an incident ray. For the purposes of this thesis it is been set to 0.0,
representing pristine crystals. It is mentioned here purely for completeness in the description of the
ray tracing program.

Edge Length of Square

The ray tracing program uses the dimensions of the layer perpendicular to the incident ray. From
this, the number of rays of cross-section = (edge length of square)” and their start positions are
calculated. The ray diameter needs to be small enough to reach conversion of the diffraction
pattern. The exact value depends on the facet areas and gap areas between them. For all child rays
of these rays leaving the layer, Fraunhofer diffraction on a circular projected cross-section is
calculated.

Determining the value of this is a matter of estimation for best results against time. The smaller the
value, the greater the quantity of rays and the greater the computational overhead, while the larger
the number the fewer the rays but also the lower the accuracy when accounting for diffraction. The
weighting of the typical facet (aperture) size against the cross sectional area of the ray is therefore
important.

The diameter of the ray needs to be small enough compared to the facet, so that details of the facet
shape are considered appropriately when calculating the surface integral for diffraction (eqs.5a&b in
Hesse et al. JQSRT 113(2012)342).
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Where:

k=2m/\ is the wave number

E"xlzr(fc’) is the component of the incident wave polarised parallel to the x’z’- plane at arbitrary
direction of observation X.

k is the normalised wave vector in the
direction of observation

ris the length of the vector X from origin to
the observation point

a is the angle of incidence of the plane wave

with the wave vector I_c)o

€, is the unit vector in the y’ direction

F(S,a; 9", @") is the surface integral of the
exact field with respect to the polar

coordinates of k

Fig.4.51.

In the samples tested, the integral is the sum

of the integrals over the ray cross sections of all rays passing through the same set of facets before
leaving the layer. For example a raydiam =0.0025, equated to approximately 1/40 times the mean
hexagon diameter of 0.1.

Similar extrapolations are used to determine the perpendicular polarised component of the wave.

Scattering Image

As rays leave the layer they are registered in a bin corresponding to their zenithal and azimuthal
scattering angle. Each bin is a complex 2x2 matrix that records the E-field of the rays entering them.
After the raytrace has been completed the irradiance distribution is calculated from the E-field.
This step can only be completed after all the contributions to the E-field have been generated on
account of the irradiance being calculated from the square of the sum of the individual
contributions. As some of these may be negative, the sum needs determining first.

Samples Simulated

Four samples were simulated using the program, corresponding, as closely as was possible to the
data collected by Kaasalainen. Three of the samples represented surface samples composed of short
columns, plates and needles. The fourth sample generated used the rounding edges crystal. This
layer differed in that the generated crystals were uniform in dimension.

The samples were used in the scattering program to generate graphs of intensity against scattering
angle.
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4.11 Sample Sizes

While the program is capable of generating samples of unlimited volumes, this is not practical in
terms of processing time both for the layer generation and the ray tracing program. As can be seen,
even a small sample can easily have 640k initial rays to trace. In practice the samples have to be
severely limited in order to make efficient use of available computing resources.

While the samples examined by Kaasalainen had a diameter of 4mm corresponding to 12.57mm?the
samples for the rounded hexagonal columns were 1Imm?though they had a depth of 2mm. The
purpose of having a significantly higher depth was to ensure that all rays interacted with a crystal at
some point during the initial pass through the layer.

For each layer, a suitable ray diameter is chosen along with a number of layers. The output is then
examined on a scatter graph and analysed.

Crystal Type Needle Improved Needle Plate Compact Column Rounded Column
Layer Density 0.0169g/ml 0.01662g/ml 0.04581 g/ml  0.08050 g/ml 0.12564 g/ml
Layer Dimensions 3x3x2mm’ 4x4x2mm’ 2x2x2 mm’® 1x1x1 mm® 1x1x2 mm?

Ray Diameter 0.0025 0.0025 0.0025 0.0025 0.0025

QTY Crystals 97 252 305 143 445

Crystal Radius (5048)um (5048)um (300+£150)um  (50+7)um 50um

Crystal Length (1,000£150)um  (300+50)um (50£10)um (100£15)um 100pm

Kaasalainen Samples

Crystal Type Needle Plate Compact Column Refrozen (Rounded)
Layer Density  0.10/ml 0.07 g/ml  0.08 g/ml 0.12 g/ml
Crystal Size 300um 500um 100pm 200um

4.11.1 Needle Layer
The original image reveals that classifying the

Fig.4.52.Fresh show sample 7" March 2005 -

Log states there are no hexagons, just the
Fig.4.53. Zoomed in section indicates the presence of

hexagonal plates in large amounts.

needle-like small grains from an ongoing
snowfall (-2C temperature).
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crystal shape of this sample of fresh snow is somewhat subjective. The presence of hexagonal plates
within the same sample as the needles may have influenced the phase function. This cannot be
confirmed as data was collected from specific areas of the sample rather than from the sample as a
whole. It is entirely possible that the needle layer data is a product of instances where the needle to
hexagonal plate ratio is high.

The enlarged image (fig.4.53) also reveals that the

hexagonal plates are not always separate crystals. 1T
It is very common for hexagonal plates to be -
attached to a column (CP1a in the Magono-Lee 0151
classifications, appendix E) or in the case above 0.44f
form into radiating assemblages of plates (P7a). It g 013
can clearly be seen that there are distinct onf J&J[H J[ ][
differences between the model and the image of 011} {e { J[ I
the sample. a1t {
008 . ‘ . . ‘ . ‘
Kaasalainen data has been plotted and compared = e e

with the phase functions for both the needle
Fig.4.54. Scatter plot generated from Kaasalainen

layer (density 1.81%) and hexagonal plate layer
aye (de sity 1.8 A)a dhe agonal plate laye data 7" March 2005. Density 10%, grain size =300um

(density 5%). The crystal (grain) sizes are

approximately of equal size. Note that the plate
layer though being seeded using the radius parameter 600um will be much smaller due to high
rejection parameter, leading to the acceptance of smaller crystals with increasing time.

In case of the Kaasalainen data the error bars are large corresponding to noisy data, though a
backscatter peak is present and calculated as 1(180)/1(175) = 0.15

In both model cases, the scattering peak has a large incoherent component to the backscatter (due
to the coherent backscatter to background intensity factor limit of 2).

Fig.4.55. Comparison with layer model phase functions
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e s T o 0 s 0 165
Scattering Angle (degrees) Scattering Angle (degrees)
Needle layer. Density 1.81%, grain size =300 um Plate layer. Density 5%, grain size <600 um
Layer 1(180°)/1(175°) HWHM Density
Needles 3.38 0.39 1.81%
Hexagonal Plates 2.46 1.8 5%
Kaasalainen 1.32 0.1 10%
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From a qualitative perspective the phase function for needles is a closer match to snow sample
classified as needles though from the data neither layer appears particularly close in terms of both
relative intensity and half-width half-maximum. In terms of density however neither model is close.

For the samples modelled, the density for the snow samples was achieved by weighing a filled
container, the surface of which was levelled off with a spade (to remove excess snow). Presumably
this will have altered the sample density to some degree by creating voids, or compressing the
sample. As presumably this sample was not the one used on the goniometer though have to
presume that all possible efforts were made to ensure that the sample measured was as close to
that weighed as possible.

4.11.2 Hexagon Sample
The image is a cropped version of the original, highlighting important features and raising three
important points:

o  While classified as hexagons by
Kaasalainen, this is classified as stellar
crystals (P1d) and ordinary dendrites
(P1e) by Magono-Lee.

o The layer model for hexagons is
inappropriate for modelling this
sample.

e There are large voids in the sample,
calling into question density
measurement (as noted in section
above) and sample size, in particular as
to whether there was complete
randomisation of crystal orientation for
the purpose of measurements.

At present the modelling of layers only

extends generating random crystals that Fig.4.56. Hexagons. Scale is in millimetres

are effectively hexagonal columns. These

can be plates, compact columns and needles through defining the radius and length component
input parameters. Features such as indents and bullets can be included through replacing either
or both basal facets with 6 triangular facets. Further, the column can be classed as broken
through giving an inclination to the basal facet.
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There are options in the code to replace the crystal generation function with a call to a pre-

generated crystal, allowing a single crystal to be randomly orientated and seeded into the layer.

AN

0%
W

CECT
A\

,<’

Fig.4.57(a). A pent-bullet rosette (C2a)

Fig.4.57(b). Convex hull of a pent-bullet
rosette (C2a)

This has been used in the creation of the rounded
column layer described in the thesis. During early
development it was also used to generate layers of
combination of bullets (C2a). The benefit of this is
that these compact arrangements will both generate
high density layers through bounding spheres, though
the benefit of convex hull test if applied is negligible
as can be seen in Fig.4.57(b). As such it is likely that
models of stellar crystals will in fact be models formed
using hexagonal plates and replacing the plates with
stellar crystals prior to creating the layer. As
modelling hexagonal plates has a high convex hull
failure rate there are clearly issues to be solved.
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5. Results

In this section the data from the four types of samples is set out. In the case of the first three,
Needles, Plates and Columns, the seeding process used an on-the-fly method of generating the
individual crystals. This allowed for generation of crystals of differing size. In the case of the Rounded
Column, a single crystal was generated. The code for generating Rounded Columns had been written
in Fortran and was not therefore compatible with the Matlab code used for generating the layers.
There was insufficient time to convert the code into Matlab.

In each of the cases the layer generated through the seeding process was subjected to the RTDF
program and the data was recorded. In most cases the overall phase function was produced and this
was compared to the findings by Kaasalainen (2006). In a few cases two-dimensional scattering data
is presented. This is useful in identifying artefact bright patches that are likely to correspond to
external reflection from individual facets. Domination of the overall scattering results by few large
reflecting facets is an unfortunate side effect of having small sample sizes. Even though the re-entry
of rays leaving via the sides of the layer, the overall structure is a repeating pattern and as a
consequence, it is reasonable to assume that a few large facets can end up accounting for a large
amount of the intensity on account of the relatively low quantity of seeded crystals and therefore
the incomplete randomisation of the orientations present. Where this has occurred, it equates to a
bright patch in the 2D-
scattering image such as in

Intensity
1 this example:

Where the phase function
bears a passing resemblance
to the findings of

Kaasalainen’s or there is at
least an indication of a
backscatter peak, analysis of

' Scattering Angle (degrees)

the peak is conducted using a
similar method to that used by
Kaasalainen. This is done to
produce two figures, the half-
width-half-maximum (HWHM)
of the backscatter peak and
1(180°)/1(175°). For ease of

Fig.5.1. Polar Plot of Intensity against scattering angle for determining these, a best fit
needles L0.3 x R0.05

s [ -8 B -4 -2 0 2 4 B g 10
X Scattering Angle {degrees)

function is used to give the

relative intensity at scattering angles. This function takes the form I{a)=a exp(-a/d) + b + ko, where g,
d, k and b are empirical parameters defining the backscatter peak and linear part of the intensity
(Piironen, 2000).

As the samples produced by the program were treated as perfectly transparent (zero absorption),
shadow hiding effect plays less of a part in the results (it will still prevent direct illumination of
particles that do not form the surface of the layer) as the rays are not absorbed after a few ray
surface interactions. As such the backscatter peak relative to baseline (or linear part of the scatter
intensity curve) is generally expected to be small. Shadow hiding still plays a role as confirmed by
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Kaasalainen. Compressing samples increased the intensity of reflected light by reducing the quantity

Fig.5.2(a). Normal scattering by irregular
uncompressed surface

Fig.5.2(b). Compressed layer leads to fewer
rays reflecting into the layer

of rays entering the layer. A possible reason is
demonstrated as is shown in the adjacent diagram. It can
be seen that were there are larger gaps rays are able to
penetrate deeper into the layer before encountering the
first surface. The reflected ray may therefore encounter
another surface rather than leaving the layer.

Significant Features

As well as the principal backscatter peak, other features in
the results are important as a means of determining if the
layer model is simulating real situations. One feature in
particular is identification of the 22° halo in the forward
phase function presuming that the rays passing through
are not completely absorbed (for perfectly transparent
material this is residual energy in the layer when the
program completes) or backscattered. This will be
apparent in the azimuthally resolved scattering results
either as a partial or full bright circle. As it is a feature of
single scattering, as the density of the layer increases,
multiple scattering will increase and as a consequence, the
halo will disappear.
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5.1 Needles

Layer Data

Hexagonal crystals

Layer (3x3x2)mm3

Rejections 25,000

Crystals Seeded 97

Crystal length (1,000£150)um
Crystal radius (50£8)um

Max indent 10%

Due to the bounding sphere method of seeding the crystals,
the needle layer suffered from very low densities. Even
though this layer was generated through the bounding
cylinder method which constrained rotation in the z-axis,
there are large voids between the crystals on account of the
large diameter of the bounding cylinders. The density of the

sample examined by Kaasalainen was 5 times denser than

Total Crystal Volume 0.304 mm’ (1.7%) this layer.
Crystal density 0.91670g/ml
Density 0.017g/ml
Size Parameter 492
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Fig.5.3(b). Needles (Kaasalainen, 2006 — Fig 7a, 7March 2005)
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Fig.5.3(c). Needles — increasing layers to 5

[ T i

Fig.5.4(b). x-z orientation revealing lack of
randomisation

Fig.5.4(c).Needle sample (Kaasalainen, 2006)
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The scatter graph Fig.5.3(c) is for 10 ray
surface interactions. There is no
indication of a backscatter peak. There
are also little obvious qualitative
similarities to the findings of



Kaasalainen (centre scatter graph for needles of similar size).

The large peaks (178°, 175° & 172°) are likely caused by surface reflection.

It is probable that the layer was dominated by reflection from individual facets of the crystal due to
only partial randomisation of the crystal orientations and on account of the few crystals present.

Further, the use of 25,000 as the rejection parameter (program terminates after it has failed to seed
a crystal after 25,000 attempts since successfully seeding the last one) meant that by the time the
program terminated, typical bounding spheres had diameters of 700um’s.

/

\

bottom

Fig.5.5(a). Single layer
with rays leaving through

N ]
V]

\

backscattering

Fig.5.5(b). Multiple layers
result in more rays

A means to simulate scattering by a thicker layer of snow was achieved
through the use of stacking layers. It was anticipated that this would lead
to more light returning to the surface rather than being lost through the
bottom of the layer and therefore an increase in overall intensity (see
adjacent diagram).

It can be seen that the only significant differences between the two
scatter plots is an increase in intensity. There is very little change in the
overall shape of the scattering curve though with increasing lays the
intensity increases. This is expected as some of the light that was
previously leaving the layer through the bottom will instead leave
through the top contributing to backscatter.

62



5.1.1 Improved Seeding Technique

Layer Data
Hexagonal crystals
Layer (4x4x2) mm®
Rejections 100

Crystals Seeded 481 (318 after convex hulls)
Crystal length (300£50)um
Crystal radius (50+8)um

Max indent 0%

Total Crystal Volume 0.58017 mm? (1.81%)
Crystal density 0.91670g/ml
Layer Density 0.01662g/ml

Size Parameter 492

While bounding spheres overlap during the
seeding process, there is a very strong
chance especially in the case of needles that
the needle being seeded does not share
space with already seeded needles.
Improvements to the seeding routine used

Fig.5.6. Increased layer density due to testing overlap
between individual crystals

convex hulls to determine if the needle to be seeded and all existing needles within overlapping

spheres actually intersected.
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Fig.5.7(a). Layer of needles revealing similarity to Kaasalainen’s
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The process proved very slow on
account of the processing time for the
function. The density for the layer was
increased six times that of the above
layer though was still a sixth of the
density of needles in the Kaasalainen
samples.

With 252 unique crystals equating to
318 when accounting for layer edge
duplicates forming the layer, i.e. 2544
facets, layer provided data that was
qualitatively comparable to the phase
function recorded by Kaasalainen (see
adjacent image). The results for the
single layer bear a similarity to the
findings of Kaasalainen with a sharp
peak at 180° (0) and 177.5°
corresponding respectively to 0° and
2.5° in Kaasalainen’s results.
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1 layer
2 layers
3 layers
average of single crystal phase functions

EEE

175
Scattering Angle (degrees)

Fig.5.8. For size parameter 492

Increasing layers in order to
simulate deeper samples of snow
give similar curves though the
overall intensity increases. A
feature is a reduction in intensity
and a broadening of the
backscatter peak compared with
the phase function for a
normalised averaged single
crystal.

This is in agreement with Kuga
and Ishimaru’s 1988)

observations for large size parameter and low layer density. For a higher size parameter, the phase
function for the media should have a similarity to that of a single particle. In the case of spherical
particles this is the Mie-scattering region.

The results are given the table below.

Layer 1(180°)/1(175°) HWHM
1 9.50 0.42

2 3.81 0.39

3 3.38 0.39
Average of single crystal 13.71 0.25
Kaasalainen 1.32 0.1

5.1.2 Modifying Ray Diameter
Ray diameter was initially to 2.5 um corresponding to approximately 1/40" of a 100 um diameter

hexagonal facet. Halving the
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ray diameter increased the
guantity of rays and therefore
the accuracy of the phase
function, in this instance
resulting in slightly increased
backscatter. The improved
accuracy however was not
sufficiently significant to
justify increasing the
processing time from 8hr40
minutes to 32hr31 (effectively
the inverse square of the

diameter change factor). It

was deemed that the keeping a ray diameter of 2.5 um under virtually all circumstances was

acceptable.
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5.1.3 Needle Layer with Convex Hull Test

There are still issues with the seeding routine though density has increased dramatically. Memory
failure eventually terminated the program before it achieved target density. At this point it is
uncertain as to whether this can be solved through pre-allocation of specific matrices or whether
this is simply due to how MATLAB handles very large data arrays and as such requires a higher
computing specifications.

Previous Improved Seeding Post Submission

Layer Data Layer Data

Hexagonal crystals Hexagonal crystals

Layer (4x4x2) mm’ Layer (4x4x2) mm?>

Crystals Seeded 481 (318 after convex hulls) Crystals Seeded 1311 (1203 unique)
Crystal length (300£50)um Crystal length (300+50)um

Crystal radius (50£8)um Crystal radius (50+8)um

Max indent 0% Max indent 0%

Total Crystal Volume 0.58017 mm?® (1.81%) Total Crystal Volume 2.26535 mm® (7.1%)
Crystal density 0.91670g/ml Crystal density 0.91670g/ml

Layer Density 0.01662g/ml Layer Density 0.06490g/ml

Size Parameter 492 Size Parameter 492

05 g5

Fig.5.10(a). Pre-convex, density 1.81% Fig.5.10(b).Post—convex update, density 7.1%

The target density (Kaasalainen, 2005) was 0.10g/ml as such the layer achieved 65% of the required
density.

RTDF was processed on this layer for 10 ray-surface interactions. The data for 1 layer, 2 layers and
average of single crystal phase function were collected for analysis.

In the data produced for the low density layer a feature is a reduction in intensity and a broadening
of the backscatter peak compared with the normalised average of all single crystal phase functions.
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Fig.5.11. Comparison of 1 layer with average of single crystal phase

function

The anticipated broadening of the central
peak is not in evidence for the higher
density layer.

The decreasing overall brightness with
increased density diverges from the
observations by Kaasalainen.

“We also attempted to determine the
effects of packing density by
mechanically compressing some samples
or allowing the sample to flatten out
overnight. The only observed effects
were an increase in surface brightness...”

The backscatter peak for the 1.81% is

significantly higher than the background
intensity and as such cannot be wholly
attributed to coherent backscatter. As such
it is probable that the increase in particles
has reduced incoherent backscatter caused
by surface reflection and factors such as
small sample size and lack of complete
randomisation of particle orientations.
Further, while a low density layer is
comparable to a cloud of independently
scattering particles whereas as the density
increases to 7.1% it is closer to multiple
particle scattering layer insomuchas the rays
leaving one particle are more likely to enter
another crystal and leave in a different
direction to direct backscatter.

5.1.4 Increasing Layers

Increasing layers, corresponding to an
increase in the depth of the snow layer does
appear to lead to a broadening of the
central peak and an overal increase in the
background intensity as expected. There is
also a decrease in the peak intensity
corresponding to direct backscatter which
as with the difference between the 1.81%
and 7.1% can be attributed to a decrease in
single particle scattering and an overall
increase in the amount of ray-surface
interactions and therefore increasing
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random phase distribution of the the rays.

5.1.5 12 Ray-surface Interactions
The RTDF model terminated prior to completing the ray trace for 12 interactions for this layer. No
further data is available.

5.1.6 Without External Reflection

The work carried out by Kaasalainen reduced
. . 1r
noise by taking shots where speckle was low. + 1% density
A major contribution to speckle is surface 03r * T 1% density
L
reflection from individual snow crystals. As 08
+
contributions to the phase function of the orr
sample by reflection from individual surface = e
facets is inversely proportional to the sample Eospe
o +
size, it is probable that in the models 04k +
. . . + &
generated, external reflection will be high. 03 -*;é:**
. . . S
External reflection contribution was 02p **“#Iﬁ v . s L
eliminated from the phase function for the 01 ' i P ' by
180 175 170 165
1.81% and 7.1% density models and the Scattering Angle (degrees)
resulting phase function was compared with Fig.5.13. No external reflection contribution reduces peaks
thOSE IﬂClUdlng external reﬂectlon. and produces smoother phasefunctions

While the scatter plots looks superficially the same there is a noticeable drop in the 178° peak for
1.81% density and the overall phase function is much smoother.

That the peak at 178° for the 1.81% density has not been wholly eliminated can be explained by the
structure of the crystals used in the model. First of all, the facets likely to contribute significantly to

any peak outside of direct backscatter angle is one that is close
to perpendicular to the incoming rays.

The symmetrical structure of the crystals used in the generation
of the model however will mean that even though external
reflection is not contributing, first order refraction needs to be
accounted for. In these cases there will be an identical facet
parallel to the surface facet which will reflect the first order
refracted ray back to the surface facet. In many cases the exiting
rays will traverse parallel and nearly paths to the externally
reflected ray as demonstrated in the diagram.

Fig.5.14. Exiting first order
refraction rays may follow similar
paths to external reflection
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5.1.7 Forward Scatter

Analysis of the forward scatter pattern produced by the
layer reveals the possibility of a partial 22° halo. It may
be an artefact due to the relatively low density and small
sample size, i.e. there is a lack of fully optimised random
orientation distribution of the crystals. This will only be
confirmed when either sample sizes can be increased
without hitting the computational time limit or the
density can be increased, thereby increasing the range of
orientations.

The upper image also has four bright spots. These were
eliminated (middle image) by changing the ray diameter.
Ray diameter is not something touched on by this thesis
though essentially the bright spots are a result of the
large ray-diameter/wavelength ratio. Adjusting the ray-
diameter proved sufficient at identifying them as
artefacts.

Comments on it have been included here purely for
completeness as forward scatter was not the focus of
this thesis. Obtaining backscatter data under laboratory
conditions (as opposed to observing the effect on
celestial bodies) is hampered by the source and collector
needing to be in effectively the same location. Further,
forward scatter is of little use for astronomical studies of
celestial bodies except possibly where observing light
passing through nebulas.
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Fig.5.15(a). The four peaks close to 14 degree
scattering angle are artefacts. Halving the ray
diameter eliminates them.

Fig.5.15(b). The presence of the 22 degree halo
however indicates that randomisation of the
particle orientation is sufficient.




5.2 Plates

Layer Data Hexagonal plates achieved higher densities than needles

Hexagonal crystals simply on account of their dimensions. The primary issue

Layer (2x2x2) mm?

Rejections 5000
Crystals Seeded 305
Crystal length (50£10)um

however was that the layer was easily dominated by a
single crystal (and its duplicates where it crossed a layer
boundary). Due to the high rejection parameter the vast

Crystal radius (300+150)um majority of the particles were very small, filling in the gaps
Max indent 0% between the bounding spheres of the earlier seeds.

Total Crystal Volume 0.39974 mm? (5%)

Crystal density 0.91670g/ml A consequence of this is the large spikes in the scatter
Layer Density 0.04581g/ml curve especially for one interaction (probably reflection

Size Parameter 3000

from the large facets). Once the quantity of interactions

increase however the dominance of the spikes is to some degree reduced allowing for slightly
improved interpretation of the data.
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Fig.5.16. Scatter plot for 10 ray-surface interactions and 1 layer

along with best fit curve

Fig.5.17. The layer is dominated by a few

Analysis is carried on the 10 ray-surface interactions data large plates. Further, the high rejection level
for 1 layer. A best fit curve is applied to this in order to meant that there were a lot of small crystals,
produce Half-width-half-maximum and /(180°)/1(175°) skewing the average crystal away from the
which are then compared to those recorded by stated layer parameter.

Kaasalainen.

Layer 1(180°)/1(175°) HWHM

Hexagonal Plates 2.46 1.8

Kaasalainen 141 0.6

Considerable scepticism regarding the best fit curve has to be included in the analysis. The large
peaks may well be obscuring real trends and as such the HWHM may be much smaller. A much
larger layer surface is required in order to increase random orientation distribution.
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5.3 Compact Hexagonal Column

Layer Data

Hexagonal Columns with end facets
Layer (1x1x1)mm®

Rejections 100

Crystals Seeded 143

Crystal length (100£15)um

Crystal radius (50£7)um

Max indent 10%

Total Crystal Volume 0.08782 mm?® (8.8%)
Crystal density 0.91670g/ml

Layer Density 0.08050g/ml

Size Parameter 492

Hexagonal columns have a height roughly
equal to their widest diameter, in this
case 0.1mm by 0.1mm. They therefore
have dimensions most suited to bounding
spheres for the purpose of seeding,
leading to the highest densities out of all
the layers where the particle is created on
the fly. This is the only layer that achieved
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curves better suited to assigning best fit curves.

15

Fig.5.19(b). Increasing both layers and interactions failed to produce
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studied by Kaasalainen.

Further, this layer included
hexagonal crystals with indents
and oblique end facets. The scatter
curve for this is considered for 12
ray interactions and 2 layers. The
difficulty here is that due to the
amount of noise caused by
incomplete randomisation of
particle orientations, determining
the best fit curve is not obvious (an
attempt though later rejected is
included in the appendices). Only a
relatively smooth line could be
generated and as such no obvious
peak could be determined.

A closer examination of the scatter
curve, using a larger scale is
conducted in order to qualitatively
compare the scatter plot with the
findings by Kaasalainen.




Layer 1(180°)/1(175°) | HWHM
1 layer 1.061 -

2 layers 1.048 -
Kaasalainen | 1.09 0.1

On the larger scale there are similarities in the two scatter plots. This may prove to be nothing more

than artefacts on account of small quantity of crystals forming the layer.

As has been previously pointed out there is considerable background noise which is being attributed

to the surface reflection from a few crystals.

5.3.1 Modified Size Parameter
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Fig.5.20(a). Scatter plots for differing size parameters
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Altering the wavelength of the rays
while maintaining the same
refractive index had the effect of
changing the size parameter as the
size parameter = 2rta/A, where A is
the wavelength and a is the radius
of the particle. The scatter plot of
phase curves is for different
wavelengths equating to the size
factors indicated.

The scatter plot for the average of
single crystal phase function does
not show a backscatter peak. The
distinct peak for the size
parameter 6.28 must be attributed
to coherent backscatter. The
results are line with Kuga that
predicts a sharp backscatter peak
due to Type | scattering where the

Fig.5.20(b).

size parameter is between 1 and 20 and layer density greater than 2.5% (this layer has a density of
8.8%).

Layer Size Parameter | /(180°)/1(175°) | HWHM

6.28 1.84 0.29°

It is also noted that the backscatter intensity is greater than for the improved seeding technique (fig.

5.7(a)). This is presumable attributed to the increased density of the layer.
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5.3.1.2 Size parameter 20 for compact columns

Layer Data

Hexagonal Columns with end facets
Layer (lxlxl)mm3

Rejections 100

Crystals Seeded 143

Crystal length (100+15)um

Crystal radius (50+7)um

Max indent 10%

Total Crystal Volume 0.08782 mm? (8.8%)
Crystal density 0.91670g/ml

Layer Density 0.08050g/ml

Size Parameter 20

In order for two partial waves traversing
time-reversed (conjugate) paths to add
constructively, their phase difference
must be small. This coherence condition
may be stated as A®/2mt «1 where Ad is
the phase difference in the waves. As

such there will be a critical angle 0.

below which condition will be satisfied
and phase coherence maintained. This Fig.5.21.

critical angle is

6 A

crit =
2¢s

5

Where A is the wavelength of the waves, s is the total scattering path length (which includes path
inside the particle and therefore particle size) and ¥ is the transport mean-free-path length (average
distance between the surfaces). Increasing density and therefore decreasing the transport mean-
free-path length will increase 8.;; which was one of the primary objectives of modelling layers. The
alternative however is to increase the wavelength.

A wavelength was 15.7um was used in the RTDF program. As there is no change to the refractive
index of the crystals, this simply equates to changing the size parameter of the crystals in the layer
as size parameter = 2rta/A, where A is the wavelength and a is the radius of the particle.

Therefore modifying the size parameter will effectively increase 8,;; and therefore increase the
scattering angle at which coherent backscatter occurs.

This is not purely for investigative purposes as other factors play a role in the modelling as the
photographs show ice crystals with very small components which could be translated into smaller
‘local size parameter’. As backscatter peak is undoubtedly related to particle size and therefore the
contributions by these small particles is worth investigating.

As coherent backscatter cannot exceed a factor of 2 (due to it being based on the square of the sum
of the conjugate waves) with respect to background intensity, any enhancement above this cannot
be attributed to coherent backscatter and must be attributed to noise from sources such as
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dominating surface reflection. This highlights the need for a large sample area so as to limit the

contribution from any one reflecting surface. It also means that the peak is proportional to the

14
+ 1 layer
19 + 2 layers
+ 3 layers
1 +  average of single crystal phase functions
=08
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Fig.5.22. Scatter plot of size parameter 20 compact columns

overall background
intensity. Primary interest
is in observing the shape of
the phase function and
comparing it to that of a
single crystal as there will
be negligible coherent
backscatter from a single
crystal though there may
be a strong reflection and
incoherent backscatter
(which is the sum of the
square of the conjugate
waves).

The scatter plot graph is for multiple layers. Data for more than one layer was achieved by re-

entering any rays that exited the first layer at the bottom back into the top of the layer. As random-

walk means that the more times this occurs, the greater the proportion of any rays entering the

layer will leave back through the surface (where the medium is perfectly transparent, i.e. non-

absorbing), increasing layers equates to increased background intensity. In all three layer cases there

is a backscatter peak which is not present in the case of the average of the single crystal phase

function. As these peak intensities do not surpass a factor of 2 and are dominate in direct

backscatter regions, it is a reasonable assumption to attribute them to coherent backscatter.

Layer Size Parameter

1(180°)/1(175°)

HWHM

20

2.5

0.15°

It is therefore reasonable to state that the model layer is capable of generating coherent backscatter

at low densities, in line with Kuga& Ishimaru (1988).
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5.4 Rounded Columns

Layer Data

Rounded hexagonal crystals
Layer (O.5x0.5x0.2)mm3
Rejections 500

Crystals Seeded 24

Crystal length 100um
Crystal radius 50um

Max indent 0%

Total Crystal Volume 0.01257 mm® (25%)
Crystal density 0.91670g/ml
Layer Density 0.23039g/ml
Size Parameter 492

As indicated
earlier, modelling
of this layer
required the
generation of a
particle to be
seeded into the
bounding spheres
(after
randomisation of
alignment). The

relatively large volume of the rounded columns

compared with their bounding sphere generated high

densities comparable with Kaasalainen
rounded grains.

samples for

As this was a very small sample, in terms of only having
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Fig.5.24(a). Strong external reflections make determining best fit

phase function impossible
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Fig.5.24(b). Refrozen (rounded) surface grains
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Fig.5.23(a).

Fig.5.23(b). Probable facets responsible for
scattering peak circled in red.

24 crystals, the large facets such as those
indicated in the above diagram along with
incomplete randomised orientation
contributed to noise despite the relatively
high quantity of facets.

The spike in the phase function is likely
due to the circled facets and prevented
any useful analysis.

Kaasalainen’s samples included surface
grains that had melted and been refrozen
producing rounding effects, grains that
had been rounded through natural erosion

(day old) and grains taken from deep into the snow layer, again having become rounded. The layer

data was therefore compared to a few

samples.
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Fig.5.25. Compressing and refreezing grains
increased the backscatter peak

curve.

and 0.10g/mL following compression.

The findings of Kaasalainen et al. (2006) indicate that
where there rounded grains such as occurs upon melting

grains also produced much stronger backscatter peak.

and refreezing, the curves are much smoother, compared
with fresh course snow. They also found that the rounded

While Kaasalainen discovered that compressing the snow,
thereby increasing packing density with a shovel had little
effect on the curve other than to increase overall
brightness. It did not significantly alter the shape of the

This said, the graphs are those of a density of 0.08g/mL
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Fig.5.26. Refrozen layer 19" March
Date Mean snow/grain size Air temperature Density Thickness 10} U HWHM
mm gmL™’ cm

Surface — new

23 Mar Columns, 0.1 =5.0 0.08 4.0 0.32 1.09 0.1
Surface - aged

11 Mar Refrozen layer, 1.5 =7.5 0.22 5.0 018 137 2
19 Mar Refrozen layer, 2.0 +2.0 0.18 4.5 0.14 1.34 1.0
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5.4.1 Increased Rounding

Layer Data

Rounded hexagonal crystals
Layer (1x1x2)mm3
Rejections 500

Crystals Seeded 445

Crystal length 100pm
Crystal radius 50um

Max indent 0%

Total Crystal Volume 0.27410 mm? (13.7%)
Crystal density 0.91670g/ml
Layer Density 0.12564g/ml
Size Parameter 492

In an attempt to decrease the
contribution by large surface
facets, the degree of rounding was
increased. This was justified by
equating the crystals to ice crystals

that has slightly melted before
refreezing, thereby causing them

to lose their sharp edges. While
Fig.5.27.

this process also undoubtedly led

to sintering and

amalgamation
of the crystals,
it is possible
that sufficient
guantities of
crystals existed
as individuals
and were as a

consequence
not too
dissimilar to , ‘ ,
T2 0 02 04 06 i 1 12 a6
rounded
hexagonal Fig.5.28(a). Fig.5.28(b).
columns.
0.65
+ T ray-surface interactions The depth of the laver was
06l p y
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= 055} * .
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180 175 170 165 crystal rather than pass

Scattering Angle (degrees)
Fig.5.29(a). 7 ray surface interactions for 1 layer compared with rounded refrozen

through the bottom of the
layer (an issue with
stacking layers is that rays

that miss all particles in the
first layer will also miss all
particles in all layers). As it
turned out using multiple
layers was not possible
with this sample on
account of processing time
limits. As such the data

grains.
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Fig.5.29(b).

collected was for multiple
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ray interactions for a single layer.

Layer Size mm | Density g/ml | 1(180°)/1(175°) | HWHM

7 ray-surface Highly Rounded Column | 0.1 0.23 - -

Surface - refrozen 0.1-0.4 |0.12 1.3 0.6

Melting > Refrozen 0.5-1.0 | 0.15 14 0.2

Deep Rounded 0.5-1.5 | 0.32 1.35 0.2
Intensity

The 2-D scatter plots however give

little supporting evidence to the
presence of the backscatter peak.

Y Scattering Angle (degrees)

Intensity

¥ Scattering Angle (degrees)

X Scattering Angle (degrees)

Fig.5.30(b). 7 ray surface interaction
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6.0 Conclusions and Discussion

From a qualitative stance, the research has been successful. The phase functions generated by some
of the layers reveal strong similarities to those produced by the field work Kaasalainen. The compact
hexagonal layer is very interesting as the backscatter peak is clearly related to the size parameter
and is therefore in agreement with Kuga (1988). This would indicate that for the size parameter of6
the backscatter is coherent as by 492 it has effectively disappeared.

Another test that may prove interesting is to investigate the focusing effect using the highly rounded
crystals (5.4.1). The density of the layer is 13.7% may generate Type Il backscatter. This will require
decreasing the wavelength in order to achieve a size factor of 33,000 (Kuga 1988). Of course even
the highly rounded crystals are not spherical and as such the intensity increase is expected to be
lower than that produced by spheres, presuming any enhancement is created at all.

Overall there is however a long way to go to achieving the goal of a catalogue of phase functions
corresponding to a range of both crystal shapes and densities to the point of being able to accurately
predict the structure of regolith from remote observation.

6.1 Bounding Volumes

A major obstacle to generating layers with density profiles consistent with the observations of
Kaasalainen has been the use of bounding spheres as a means of seeding crystals. While the method
is reasonable where the semi-major and semi-minor axis of a crystal are similar such as in the case of
the compact column, where they diverge significantly such as in the case of needles and hexagonal
plates, the resulting empty volume within the bounding sphere severely reduces the potential
density of the resulting layer. Increasing the quantity of rejections to very high numbers proved not
to be a solution on account of reducing the average size of the crystal as the quantity of crystals
seeded increased. This was a consequence of the decreasing volume between the bounding spheres
decreased.

The solution using a more exact treatment of the volume of the seeded crystal through the use of
convex hulls was only completed towards the end of the research when it became apparent that
previous methods to increase layer density proved inadequate. The seeding process replaced the
bounding sphere with a convex hull formed from Delaunay triangulations and determined if any of
the lines forming the frame of the seeding crystal passed through the convex hull.

The 30% increase in crystals seeded for the h/2a=3 layer through the use of convex hull testing was a
modest improvement though limited due to the relatively low aspect ratio of the crystals. This
meant that where the spheres overlapped there was a high degree of probability that the crystals
would also overlap.

Seeding improvement through convex hulls is related to the aspect ratio. The smaller the volume
within a bounding sphere occupied by the crystal, the greater the chance that two crystals in
overlapping bounding spheres will not share the same volume. It is therefore reasonable to assume
that the convex hull intersection test will give better results with increasing aspect ratios. The issue
however is that as bounding sphere density increases, the average quantity of potential overlaps
also increases resulting in more convex hull intersection tests.
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In practise the issue however with this approach was simply that it had a massive computing
overhead and where it was tried for high aspect ratio crystals for even modest sized layers simply
failed to generate a layer after running for days due to being terminated by the time limit.

The approach to speed up the process set a maximum quantity of overlaps between the seeding
bounding sphere and previously seeded bounding spheres. The reason was that where there were
numerous overlaps, it was likely that the convex hull test would confirm overlap with at least one
previously seeded crystal. This compromise ultimately limited the density of the layer.

Further, crystals such as the hexagonal plates required a second test as the first test only checked for
the framework of the seeding crystal against all the convex hulls of the overlapping spheres. For
hexagonal plates, the convex hull of the crystal being seeded also needed to be checked against all
the lines forming the framework of the previously seeded and potentially overlapping plates.

As this is clearly the way forward for further research, methods will have to be implemented to
optimise this code. The first step would be to look at how data is generated, stored and used while
processing. As code is the product of development steps, data is generated that was needed in
earlier versions and may now prove redundant though has not yet been pruned. It is also certain
that some methods of manipulating the data are not optimised. These include adding to arrays while
running checks on the arrays or processing the data of an entire array rather than narrowing down
the data that is selected prior to manipulating it. In the case of the line array (the matrix containing
the functions for the lines forming the framework of the crystals), there is a selection process which
has to loop through the array twice each time there is a convex hull check. Replacing this with a
more sophisticated look-up function will speed up the process as each new hexagonal crystal
(without indented/filled basal facets) added to the layer effectively increases this array by 24 entries.

Another optimisation is to determine if there are methods of avoiding the convex hull test without
significantly undermining the seeding processes. One that has recently been considered is rejection
based on the separation between the seeding sphere and those it overlapped with. As the crystals
within the bounding sphere pass through the centre of the sphere, two spheres whose origins are
within the average radius of the crystal will generally have overlapping crystals. As such, where the
separation is less than the sum of the crystal radius (columns) or half-lengths (hexagonal plates), the
seeding bounding sphere can be rejected without testing for convex hull intersection. Such a test
would speed up the process significantly for crystals with low aspect ratios such as compact
columns.

Primary candidate for scrutiny however lies with the convex hull test and a means of either replacing
it with a cross product test (looking at each of the facets individually) or determining a means of
speeding up the process. Up until the convex hull test, even very large layers were generally
generated in a few minutes. After this function, even small layers could easily take many hours.

The convex hull test can take anything up to 3 seconds per test. A hexagonal column has 24 lines
forming its framework and each of these were tested against anything up to 20 different convex
hulls as this was the limit placed on the maximum quantity of bounding spheres to test against
overlap. It can therefore be seen that just these rejections alone added up to 92 hours to the run
time of the code. It is actually significantly less than this for two reasons. First it is unlikely that the
there were 20 overlaps in each case. Second, some degree of optimisation was included insofar as
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the function was run using a matrix that included all the lines forming the framework. This meant
that each test took significantly less than 72(=3x24)seconds.

As the final density was around double the density of samples without the function, around 100
crystals were also subjected to the test and passed. This is anything up to 40 hours though again,
significantly less for the reasons described above.

Despite this, it was effectively found that generating even this relatively small layer took days and
layers were often generated over the weekend.

In the case of hexagonal plates, the process requires reciprocation due to the significant chance of a
facet of the seeding crystal intercepting a line forming part of the framework of the previously
seeded crystal. As such this effectively doubles the time to generate a layer. It is hardly surprising
therefore that for anything other than very small layers, the programs terminated prior to producing
a result.

6.2 Improvement Options
There is always room for improvement beyond optimizations of the code discussed above.

6.2.1 Pre-allocation of volume

As snow falls such that the ice crystals rest against other crystals, a similar approach could be used as
part of the seeding process to ensure that space is filled with crystals. This can be achieved by
choosing a vertical position and systematically moving the seeding crystal down in steps until its
convex hull intersects a convex hull of a pre-seeded crystal, at which point the downward movement
is terminated at the previous step. It is suspected however that this approach will suffer the same
computing overheads as the convex hull approach.

6.3 Sintering

Further development can be made using convex hulls to include sintering — the process by which one
or more crystals amalgamate into a single crystal, in the case of ice crystals through partially melting
and refreezing. The process can theoretically be achieved by replacing a crystal that overlaps with
another crystal with the convex hull of the sum of the two crystals. There would have to be some
determination of the degree of sintering allowed. Further, rather than outputting the seeded crystals
to an emerging array of data for the facets, vertexes and their coordinates the data will need to be
outputted only after the crystals have been seeded as the sintering process will cause one or more

crystals to be converted into one.

6.3.1 Dendrites

When hexagonal plates grow, they have a steadily
increasing chance of growing dendrites. As these become
more complex they eventually achieve the common
conception of a six sided snowflake. A possible
development of the seeding process could be to
generate structures at the intersection of vertexes as

seen in the below photo (Ono, 1969).

Fig.6.1. Dendritic growths leading towards
classical snowflakes.
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The sintering approach could be used as a standalone function to create crystal file of commonly
occurring shapes such as hexagonal plates with smaller dendritic hexagonal plates at the corners.
The growths could be grown on any point and at any size, though for this approach to be useful will
require studies of snow samples to determine the proportion hexagon plates having dendritic
growths and the relative proportions of the growths compared to the plate for snow samples.

A less complex approach is to treat the surfaces of the crystals as rough rather than perfectly smooth
facets. This changes the angle of incidence between the ray and the surface, thereby changing the
angles of reflection and refraction. This will result in a greater degree of scattering and may
compensate for relatively small layer samples.

6.4 Range of Crystals

This initial development uses simple relatively homogenous crystals. It is a relatively simple matter
to extend this to seeding layers with a range of crystal types. Snow for example may consist of a
mixture of sheaths (hexagonal columns with indented basal facets) and plates. Regolith consisting of
dust and ice are likely to contain cuboid sand grains along with ice crystals. In these cases however
the extra data such as the refractive index and absorption coefficient of individual grains will have to
be included in the layer data.

6.5 More Detailed Characterization of Snow Data

The data provided by Kaasalainen does not provide sufficient data regarding the limits of the snow
crystals present in the samples. Only the average size parameter is indicated. As the samples were
characterised by a common crystal shape, it is assumed that the average size applied to said crystal.
Along with the pristine crystals will be a proportion of broken crystals and irregular fragments. It is
unknown as to what degree these exist within the sample. It is however noted that compressing
(and therefore presumably further damaging the ice crystals) did not significantly affect the phase
function of the snow sample. This is to some degree encouraging as it indicates that while the crystal
shapes are identifiable they by and large dictate the phase function of the layer. This will have to be
confirmed through the creation of layers with differing levels of arbitrarily shaped particles alongside
the common particles forming the layer.

6.6 Summary

The thesis explored a method of simulating light scattering by layers consisting of non-spherical
particles. The particles were chosen to simulate pristine ice crystals such as occurring in relatively
fresh snow. Four types of crystals were investigated:

e Hexagonal columns, aspect ratios 10:1 and 3:1
e Compact hexagonal columns, aspect ratio 1:1
e Hexagonal plates, aspect ratio 1:12

e Rounded columns, aspect ratios 1:1

The primary programming aim was to generate a layer such that it could be used to simulate an
infinite plain of regolith. It achieved this by seeding crystals into a layer volume through a cyclically
closed loop such that when light rays left the layer along the sides of the layer volume they could be
reinserted back into the layer, though offset by the appropriate layer dimension.
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Once the layer generating program was functional, the objective was to determine if the layer would
generate a backscatter surge identified with coherent backscatter as a consequence of light
undergoing constructive interference as they passed along conjugate ray paths.

Due to the limits of bounding spheres and computational overhead incurred through the use of
convex hull interception tests, consideration of density was included.

A second objective was to determine if the qualitative phase function of the particulate layers
agreed with the field studies of Kaasalainen.

The layers were tested using a ray tracing program which included diffraction on facets. Parameters
altered or identified with data collected for the investigations included:

e Wavelength

e Quantity of Layers

e Ray-surface Interactions
e Ray diameter

6.61 The results show a backscattering surge for:

e Small particle size parameter and layer volume density 8.78% (5.3.1) and 1.81% (5.1.1). The
higher surge was observed for the larger volume density. This is in agreement with Kuga and
Ishimaru.

e Higher size parameter and relatively low layer density (1.81%, 5.1.1). This agrees with Kuga
and Ishimaru’s observation that tenuous media the phase function should have similarity to
single particle phase function.

e (Qualitative agreement with measurements at snow layers (Kaasalainen et al.) for fresh snow
consisting of hexagonal columns (5.1.1 & 5.3).

6.7 Further work:
e Optimisation of the convex hull intersection code to increase layer density.
e Test model against measurements taken from well characterised samples.
e Investigate particle roughness, sintering and inclusion of fragments.

6.8 Methods of Improving Sampling Data

A major part of the project was achieving layer samples with densities consistent with the samples
collected by Kaasalainen and achieving complete randomisation through large surface areas. This
process however appears to have surpassed the actual sampling methods employed by Kaasalainen.
Hostile sampling conditions such as weather combined with both the delicate nature of the snow
crystals and the small area scanned out by the probe meant that data was very noisy. Further, the
samples were for a relatively small number of crystals and that the samples were not of pristine
crystals or even of a single type. It would have aided the modelling process if Kaasalainen had used
specific classifications for the samples collected such as those used by Magono-Lee along with
enlarged sections from the photos.
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The next step in sampling therefore should include a method by which an area can be examined in
order to generate 2D plots. This could be achieved by taking shots of a revolving sample in order to
generate time-resolved data. This may be sufficient to indentify features within the plot that cannot
be observed within a one dimensional phase function. It is possible that there is data unique to a
crystal shape embedded in the data that is not necessarily the product of dominating surface

reflection such as in the case when a small

Intensny

sample (and therefore incomplete

1.2

randomisation) is examined.

Output from the RTDF program for needle
grains of dimension ratio 3:1 produced two-
dimensional scattering functions. These
revealed the presence of bright and dark

¥ Scatienng Snghe (Segrees)

patches at specific polar coordinates. When
treated as one dimensional scattering function
these would equate to angles with larger error

regions.

m 8 & 4 2 0 2 + & @8
¥ Seatteeng Anghe (dagroes)

It is the estimation of Sanna Kaasalainen that ) ) ) )
Fig.6.2. Polar Plot of Intensity against scattering angle

achieving field data to obtain 2D plots is not for Needle grains L0.3 x R0.05
likely to be forthcoming in the near future

without necessary advances in technology.
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Appendix

A. Sample line equation matrix
Single hexagonal column crystal

Form — bounding sphere number and equations for the x,y, z coordinates for any given value of t.

[202, (37726843968657*1)/4503599627370496 + 2366325988986969/2251799813685248, (1370224362431*t)/70368744177664 + 6362875491685209/281474976710656,
(109406936949779*t)/2251799813685248 + 6171296937557361/9007199254740992]

[202, (95716183761297*t)/4503599627370496 + 4770378821942595/4503599627370496, (13569969234053*t)/281474976710656 + 6368356389134933/281474976710656,
(13358769786049*1)/2251799813685248 + 6608924685356477/9007199254740992]

[202, (28976617051401*t)/2251799813685248 + 1216523751425973/1125899906842624, (4041976486425*t)/140737488355328 +3190963179184493/140737488355328,
6662359764500673/9007199254740992 - (192106412614737*t)/4503599627370496]

[202, 2462024119903347/2251799813685248 - (37726843968657*t)/4503599627370496, 1597502577835459/70368744177664 - (1370224362431*t)/70368744177664,
6278146939271199/9007199254740992 - (109406936949779*t)/2251799813685248]

[202, 4886321395838037/4503599627370496 - (95716183761297*t)/4503599627370496, 399033088368257/17592186044416 - (6784984617027*t)/140737488355328,
5840519191472083/9007199254740992 - (13358769786049*t)/2251799813685248]

[202, 1197651303019185/1125899906842624 - (28976617051401*t)/2251799813685248, 3185479722329029/140737488355328 - (8083952972849*t)/281474976710656,
(192106412614737*t)/4503599627370496 + 5787084112327887/9007199254740992]

[202, (191432367522595*t)/9007199254740992 + 7209048977209083/9007199254740992, (13569969234053*t)/281474976710656 + 3201840128004547/140737488355328,
(13358769786049*t)/2251799813685248 + 5776446697695905/9007199254740992]

[202, (75453687937315*t)/9007199254740992 + 3700240672365839/4503599627370496, (1370224362431*t)/70368744177664 + 6417250225243147/281474976710656,
(109406936949779*1)/2251799813685248 + 5829881776840101/9007199254740992]

[202, 7475935032668993/9007199254740992 - (28976617051401*t)/2251799813685248, 6422731122692871/281474976710656 - (8083952972849*t)/281474976710656,
(192106412614737*t)/4503599627370496 + 6267509524639217/9007199254740992]

[ 202, 7360028564463389/9007199254740992 - (191432367522595*t)/9007199254740992, 3207323584860011/140737488355328 - (6784984617027*t)/140737488355328,
6651722349868691/9007199254740992 - (13358769786049*t)/2251799813685248]

[202, 3584298098470397/4503599627370496 - (75453687937315*t)/9007199254740992, 400067325030373/17592186044416 - (1370224362431*t)/70368744177664,
6598287270724495/9007199254740992 - (109406936949779*t)/2251799813685248]

[202, (28976617051401*t)/2251799813685248 + 7093142509003479/9007199254740992, (4041976486425*t)/140737488355328 + 1598899075759061/70368744177664,
6160659522925379/9007199254740992 - (192106412614737*t)/4503599627370496]

[ 202, 2366325988986969/2251799813685248 - (2372161446944397*t)/9007199254740992, (32720811351035*t)/281474976710656 + 6362875491685209/281474976710656,
6171296937557361/9007199254740992 - (5318707315991 *t)/4503599627370496)

[202, (75453687937315*t)/9007199254740992 + 7093142509003479/9007199254740992, (1370224362431*t)/70368744177664 + 1598899075759061/70368744177664,
(109406936949779*1)/2251799813685248 + 6160659522925379/9007199254740992]

[202, (593040361736099*t)/2251799813685248 + 3584298098470397/4503599627370496, 400067325030373/17592186044416 - (32720811351035*t)/281474976710656,
(5318707315991 *t)/4503599627370496 + 6598287270724495/9007199254740992]

[202, 4770378821942595/4503599627370496 - (37726843968657*t)/4503599627370496, 6368356389134933/281474976710656 - (1370224362431*t)/70368744177664,
6608924685356477/9007199254740992 - (109406936949779*t)/2251799813685248]

[ 202, 4770378821942595/4503599627370496 - (593040361736099*t)/2251799813685248, (32720811351035*t)/281474976710656 + 6368356389134933/281474976710656,
6608924685356477/9007199254740992 - (5318707315991 *t)/4503599627370496)

[ 202, (191432367522595*t)/9007199254740992 + 3584298098470397/4503599627370496, (6784984617027*t)/140737488355328 + 400067325030373/17592186044416,
(13358769786049*1)/2251799813685248 + 6598287270724495/9007199254740992]

[ 202, (2372161446944395*t)/9007199254740992 + 7360028564463389/9007199254740992, 3207323584860011/140737488355328 - (8180202837759*t)/70368744177664,
(5318707315991 *t)/4503599627370496 + 6651722349868691/9007199254740992]

[202, 1216523751425973/1125899906842624 - (95716183761297*t)/4503599627370496, 3190963179184493/140737488355328 - (13569969234053*t)/281474976710656,
6662359764500673/9007199254740992 - (13358769786049*t)/2251799813685248]

[ 202, 1216523751425973/1125899906842624 - (2372161446944395%t)/9007199254740992, (8180202837759*t)/70368744177664 + 3190963179184493/140737488355328,
6662359764500673/9007199254740992 - (5318707315991 *t)/4503599627370496)

[202, (28976617051401*t)/2251799813685248 + 7360028564463389/9007199254740992, (8083952972849*t)/281474976710656 + 3207323584860011/140737488355328,
6651722349868691/9007199254740992 - (192106412614737*t)/4503599627370496]

[ 202, (2372161446944395%t)/9007199254740992 + 7475935032668993/9007199254740992, 6422731122692871/281474976710656 - (32720811351035*%t)/281474976710656,
(5318707315991 *t)/4503599627370496 + 6267509524639217/9007199254740992]

[202, 2462024119903347/2251799813685248 - (28976617051401*t)/2251799813685248, 1597502577835459/70368744177664 - (4041976486425*t)/140737488355328,
(192106412614737*1)/4503599627370496 + 6278146939271199/9007199254740992]

[ 202, 2462024119903347/2251799813685248 - (2372161446944395*%t)/9007199254740992, (32720811351035*t)/281474976710656 + 1597502577835459/70368744177664,
6278146939271199/9007199254740992 - (5318707315991 *t)/4503599627370496)

[202, 7475935032668993/9007199254740992 - (75453687937315*t)/9007199254740992, 6422731122692871/281474976710656 - (1370224362431*t)/70368744177664,
6267509524639217/9007199254740992 - (109406936949779*t)/2251799813685248]

[ 202, (593040361736099*t)/2251799813685248 + 3700240672365839/4503599627370496, 6417250225243147/281474976710656 - (32720811351035*t)/281474976710656,
(5318707315991 *t)/4503599627370496 + 5829881776840101/9007199254740992]

[202, (37726843968657*t)/4503599627370496 + 4886321395838037/4503599627370496, (1370224362431*t)/70368744177664 + 399033088368257/17592186044416,
(109406936949779*1)/2251799813685248 + 5840519191472083/9007199254740992]

[ 202, 4886321395838037/4503599627370496 - (593040361736099*t)/2251799813685248, (32720811351035*t)/281474976710656 + 399033088368257/17592186044416,
5840519191472083/9007199254740992 - (5318707315991 *t)/4503599627370496)

[ 202, 3700240672365839/4503599627370496 - (191432367522595*t)/9007199254740992, 6417250225243147/281474976710656 - (13569969234053*t)/281474976710656,
5829881776840101/9007199254740992 - (13358769786049*t)/2251799813685248]

[ 202, (2372161446944397*t)/9007199254740992 + 7209048977209083/9007199254740992, 3201840128004547/140737488355328 - (8180202837759*t)/70368744177664,
(5318707315991 *t)/4503599627370496 + 5776446697695905/9007199254740992]

[202, (95716183761297*t)/4503599627370496 + 1197651303019185/1125899906842624, (6784984617027*t)/140737488355328 + 3185479722329029/140737488355328,
(13358769786049*1)/2251799813685248 + 5787084112327887/9007199254740992]

[ 202, 1197651303019185/1125899906842624 - (2372161446944397*t)/9007199254740992, (8180202837759*t)/70368744177664 + 3185479722329029/140737488355328,
5787084112327887/9007199254740992 - (5318707315991 *t)/4503599627370496)

[202, 7209048977209083/9007199254740992 - (28976617051401*t)/2251799813685248, 3201840128004547/140737488355328 - (4041976486425*t)/140737488355328,
(192106412614737*t)/4503599627370496 + 5776446697695905/9007199254740992]

[ 202, (2372161446944397*t)/9007199254740992 + 7093142509003479/9007199254740992, 1598899075759061/70368744177664 - (32720811351035*t)/281474976710656,
(5318707315991 *t)/4503599627370496 + 6160659522925379/9007199254740992]

[202, (28976617051401*t)/2251799813685248 + 2366325988986969/2251799813685248, (8083952972849*t)/281474976710656 + 6362875491685209/281474976710656,
6171296937557361/9007199254740992 - (192106412614737*t)/4503599627370496]
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B. Best fit analysis
Takes the form I(a)=a exp(-a/d) + b + ka, where a, d, k and b are empirical parameters defining the

backscatter peak and linear part of the intensity (Piironen, 2000)

Equivalent to:

I(@) =1, exp(-0.5a /1) + I, + kex

Piironen, (2000)

Table 1. Results from the least-squares linear-exponential fits to the snow measurements. B is
the tilt angle (angle between the sample mean plane and the obscrver), R is the reflectivity, I,
is the part of the intensity caused by the opposition spike, / is the width of the spike /, and
are the background and the slope of the lincar part of the intensity, and (I, + fp, )/ I is the

relative intensity of the surge.

Targel R I, I i, (L + 1,V &
Pure snow - B = 10° 0.20 0.675 0.114 491 L4 -0.0486
Pure snow - B = 20° 0.27 0432 0367 6.57 1.07 -0.0005
Pure snow - B = 30° - - - 784 -, -0.1150
Dirty snow - B = 5° 0.075 0475 0.0818 1,84 126 0,110
Dirty snow - B =10° 011 0.409  0.627 238 117 0,014
Dirty snow - B =20° 0.16 0.405 0400 377 L1l -0.000
Very dity snow-B=5° 0045 0515 0177 1.03  1.50 -0.0376
Very dirty snow - B=10°  0.03 0569  0.136 1.26 145 -0.0534
Very dirty snow - B=20° 0,07 0304 0459 .60  1.19 -0.0189
Piironen, (2000)
Sample data:
Improved seeding technique (5.1.1)
Data Best Fit

Angle 1 layer 2 layers 3 layers 1 layer 2 layers 3 layers

165 0.165041 0.226132326 0.260221424 0.175 0.225 0.275

166 0.168413 0.229248158 0.282460294 0.18 0.23 0.28

167 0.179381 0.251271625 0.298895185 0.185000001 0.235 0.285

168 0.229346 0.331010885 0.343220533 0.190000003 0.24 0.29

169 0.16615 0.233718038 0.286287078 0.195000017 0.245 0.295

170 0.177226 0.227335567  0.28310788 0.200000084 0.25 0.3

171 0.161264 0.227537898 0.279955278 0.205000418 0.255 0.305

172 0.189109 0.252142611 0.310951856 0.210002071 0.260002 0.310002

173 0.182247 0.263075019 0.316712568 0.215010256 0.26501 0.31501

174 0.173479 0.245169754 0.309346177 0.220050797 0.270051 0.320051

175 0.190841 0.265663337 0.313420459 0.225251597 0.275252  0.325252

175.5 0.194624 0.290171627 0.338148319 0.228059939 0.27806 0.32806
176 0.209859  0.33932778 0.369011099 0.231246168 0.281246 0.331246

87




176.5
177
177.5
178
178.2
178.4
178.6
178.8
179
179.1
179.2
179.3
179.4
179.5
179.6
179.7
179.8
179.9
179.95
180
175

0.225786
0.235256
0.567313
0.417472
0.329314
0.376775
0.368606
0.345412
0.410834
0.428741
0.429459
0.470555
0.554514

0.64514
0.647654
0.725075
0.828947
0.968378
1.102519

0.308356755 0.394951249 0.235273398 0.285273 0.335273
0.342592859  0.454347477 0.24117231 0.291172 0.341172
0.644076598 0.728483264 0.251236729 0.301237 0.351237
0.543243995 0.636561515 0.270571653 0.320572 0.370572
0.483191959 0.605665165 0.283100851 0.333101 0.383101
0.501963877 0.584958879 0.299977959 0.349978 0.399978
0.476497169 0.575896268 0.322844689 0.372845 0.422845
0.467084133 0.552038106 0.353955774 0.403956 0.453956
0.480439588 0.544635421 0.396422388 0.446422 0.496422
0.532337358 0.587599927 0.423197585 0.473198 0.523198
0.482142487 0.565736319 0.454526942 0.504527 0.554527
0.558674578 0.616396107 0.491211056 0.541211 0.591211
0.635553387 0.690645963 0.53416683 0.584167 0.634167
0.694312906 0.747667582 0.584496723 0.634497 0.684497
0.669711796 0.758982787 0.643473211 0.693473 0.743473
0.711959686 0.792137311 0.712585263 0.762585 0.812585
0.87103316 0.887919066 0.793614452 0.843614 0.893614
0.946642851 0.979970182 0.88860157 0.938602 0.988602
1.075589698 1.152597816 0.942083864 0.992084 1.042084
0.95 1.05 1.1

0.100008104 0.275252 0.325252

Compact columns (best fit curve rejected)

x (Scattering Angle)

170
171
172
173
174
175
175.500000000000
176
176.500000000000
177
177.500000000000
178
178.500000000000
179.100006103516
179.199996948242
179.300003051758
179.399993896484
179.500000000000
179.600006103516
179.699996948242
179.800003051758
179.899993896484
179.949996948242

y (Intensity )

0.349108322237321
0.360786353305948
0.367419531790180
0.336157720316112
0.421332989263057
0.387067063511777
0.385406764790405
0.411830141863650
0.454332405258556
0.432217481019587
0.378514150085313
0.368426713082422
0.361299774529905
0.351637740906730
0.364725957564123
0.365320550500794
0.358330408607446
0.370441204754143
0.394207667387503
0.368110164649066
0.338512485535985
0.378247300282281
0.405963555033843

I(x) =0.10*exp((x-
180)/0.085)+ .3505 +
(0.0005*(x-180))
0.345500000000000
0.346000000000000
0.346500000000000
0.347000000000000
0.347500000000000
0.348000000000000
0.348250000000000
0.348500000000000
0.348750000000000
0.349000000000000
0.349250000000017
0.349500000006044
0.349750002167603
0.350052524319827
0.350108173834967
0.350176515376207
0.350285969676225
0.350528821704005
0.351204261232787
0.353282109112948
0.359909250607846
0.381284299568297
0.406003642091668
+/- 0.0136

I(175) = 0.3480
1(180) =0.4505
1(180/175) = 1.2945
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I(x")= 0.10*exp((x-
180)/0.075)+ .3385 +
(0.0003*(x-180))
0.335500000000000
0.335800000000000
0.336100000000000
0.336400000000000
0.336700000000000
0.337000000000000
0.337150000000000
0.337300000000000
0.337450000000000
0.337600000000000
0.337750000000000
0.337900000000262
0.338050000206115
0.338230616302294
0.338262329899744
0.338298843974211
0.338353541701845
0.338477263380134
0.338862836121997
0.340241488448332
0.345388628772465
0.364827566908671
0.389824621930492
+/- 0.0121

1(175) = 0.3370
1(180) = 0.4385
((180/175) = 1.2945



C. Kaasalainen snow data

2004
Date Mean snow/grain size Air temperature Density Thickness HO) @ HWHM
L]
mm gmbL ! cm

Surface — new

23 Mar Columns, 0.1 =3.0 0.08 4.0 032 1.09 0.1
Surface — aged

11 Mar Refrozen layer, 1.5 =7.3 0.22 3.0 018 137 1.2
19 Mar Refrozen layer, 2.0 +2.0 08 45 014 134 1.0
Layers

23 Feb 15-20cm, agglomerate, 0.7 =20.0 0.28 4.0 029 125 0s
18 Mar 15-20cm, decomposed, 0.7 +2.0 0.22 & 0.24 1.18 03
23 Mar 20 cm, decomposed, 0.5 =5.0 0.27 35 035 1.10 0.1
23 Mar 40-50cm, rounded, 1.5 =5.0 0.33 35 027 1.30 05
Depth hoar

23 Mar B0 cm, facets 4.0 =5.0 0.35 4.0 024 123 05

2005
Date Snow, grain size Air temperature Density )] :'i HWHM
5]
mnm ‘C gl

Surface - new

27 Feb Facets, 0.2-1.0 =55 0.0 019 1.25 0.z
3 Mar Melting (T), 0.1-0.3 +3.0 0.06 014 1.63 0.3
3 Mar Refrozen (T), 0.1-0.4 -1.0 0az2 010 1.30 0.6
4 Mar Hexagons, 0.1-1.0 -4.0 0.07 07 1.4 0.6
7 Mar Needles, 0.3 =1.0 0.0 0.1s 1.32 0.1
Surface - aged

1 Mar Melting, 0.5-1.0 +2.0 0.1 014 1.55 0.4
2 Mar Melting, 0.5 +2.5 0az2 013 1.42 [
2 Mar Frozen, 0.5 =3.0 0az 014 1.10 0.1
2 Mar Refrozen, 0.5-1.0 -3.0 015 01z 1.40 0.z
& Mar Compressed, 0.1-0.3 6.5 0.08 017 1.32 0.4
& Mar Tday old, 0.2-0.5 =5.0 0.0 018 1.18 0.3
& Mar 1day old, shaken, 0.2-0.5 =3.0 0.14 019 1.16 0.8
10 Mar Rounded, 0.2-0.5 =7.3 01 016 1.25 0.4
11 Mar Layer (R), 0.2-0.5 =9.0 0.24 1.1 1.1
12 Mar Layer (R), 0.2-0.5 =-8.0 0.24 1.7 0.4
Layers

3 Mar 40 cm, coarse, 0.7=1.0 =1.0 029 01z 1.27 01
4 Mar 1cm, columnsfacets, 0.5-1.0 4.0 0.10 016 1.21 0.2
4 Mar &0 cm, agglomerates, 0.8 =3.5 031 0.11 1.17 1.1
11 Mar 30cm, rounded (R), 0.2-2.0 =9.0 028 014 1.32 03
11 Mar 30cm, rounded, 0.5 =5.0 030 0.10 1.13 0.4
11 Mar 60 cm, round/agglomerate, 1.0 -5.0 033 0.03 - -
12 Mar 30cm, rounded (R), 0.5-1.5 =8.0 032 013 1.35 0.2
12 Mar 30 cm, agglomerates, 0.5-0.8 =6.0 0.29 012 1.19 0.1
12 Mar 5-10cm, rounded, 0.7-1.0 6.0 0.20 015 1.28 0.4
13 Mar 5-10cm, melrefreeze, 0.7 6.5 0.19 016 1.25 0.5
13 Mar 30 cm rounded, 0.5-1.0 6.5 028 014 1.28 09
Depth hoar
4 Mar 80 cm, faceted, 2.0 =3.5 028 0.06 1.53 1.2
10 Mar 80 cm, facets, 2.0-3.0 =7.3 031 0.08 1.24 0.1
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D. Ono ice crystals data and sample images

Cloud top Sampling level
Tem- Tem-
pera- . pera-
Cloud Height  ture Height  ture Particles Types of ice
Dhate type (km) () Pass  (km} (o) sampled crystals
10 August 1960 Strato-
cumihss 29 -0 A 2.3 =2 Tce & water Columnar
11 August 19066 Stratus 5.8 - 33 A 5.6 - 32 Tce Columnar & plane
Cuamulus i9 —15 B 3.9 —15 Ice & water Columnar & plane
22 August 1966 Cuamulus 5.2 —25 A 4.3 —21 lee & water Columnar & plane
Cumufus 4.3 —21 B 33 —15 Tce & water Columnar & plane
13 Qetober 1066 Camulus 5.8 — 2} A 52 —13 Ice & water Columnar & plane
15 October 1966 Alto-
stratus R —18 A 5.6 —17 Tee & water Columnar & plane
Alto-
cumulus 5.0 - 16 B 5.2 —135 Tce & water Columnar & plane
18 Octoher 1966 Cumula-
nimbus >55 <20 B 52 —17 Tee & waler Columnar & plane
Cumulo- Tce, water &
nimbuz =53 < =20 C 4.7 —13 graupel Columnar & plane
22 Julyw 1967 Cumulus 3.6 —5 29 —2 Iee & waler Cohumnar
1 August 1967 Stratus 2.5 -7 23 =35 Chiefly water Columnar
80
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I, 6. Kelation between the thickness and diameter of plane ice crystals. The double circles indicate
side-on measurement of crvstal thickness ; hatehed circles, rimed crystals ; open circles, ice crystals with-
out riming, The experimental resulle of Rewnalds (1932} are plotted for comparison.
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Fig. 1. Sheath ice crystal observed at —5C, 1 August 1967, Fra. 2, Warm-region column observed at —2C, 10 August 1966,

Fig1. Needle aspect ratio 10:1(=400um) Fig2. Column aspect ratio 3:1((=250um)

- B et § g S A=

Fie, 4. Column with end plates observed at —13C, 22 August
1966, Accreted cloud droplets froze with the same *¢™ axis
orientation as that of the substrate column crystal.

Fig4. Column with heavy dendritic growths
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E. Magono-Lee Snowflake classifications
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F. Code

Basic code consists of five programs:
Sandbox — Main code that calls functions and generates files.

Assemble Layer — Uses generated parameters to create bounding spheres and duplicates where they
cross boundaries. Also tests for simple rejection based on degree of overlapping.

Hexcolumn — Generates the vertex data for a hexagonal column with options for multiple basal
facets (indents and bullets) and oblique basal facets.

Add Crystal to Layer — Replaces bounding spheres with crystals after rotation.
Show Crystals — Used for generating the images of the layer.
Tetris Variant:

Sandbox , Assemble Layer, Add Crystal to Layer

Sandbox

function varargout=Sandbox4 (varargin)

handles.length=10;
handles.width=10;
handles.thickness=2;
handles.failureBreakOut=10;
handles.outputFileName='seedCrystal.txt"';
handles.L mean=0.1;
handles.L deviation=0.03;
handles.R mean=0.5;
handles.R deviation=0.1;
handles.aveIndent=0.0;
handles.crystalDensity=0.9167;
% case 'Hex Columns Only'
handles.crystalSeeds=1;
case 'Hex/Single Indents'
handles.crystalSeeds=2;
case 'Hex/Sing/Doub'
handles.crystalSeeds=3;
handles.obliqueBasalFacet=0;

o oo oP

o

rejections=0;

uniqueCrystals=0;

totalCrystals=0;

layer=zeros;

seeds=0;

crystalNo=0;

emergingArrayFacets=0;
emergingArrayVertex=zeros (3,0);
emergingArrayVertexNewStructure=zeros (3,0);
emergingArrayVertexLocation=zeros (3,0);
totalvVolume=0;

density=0;

planeMatrix=zeros(0,0);
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lineMatrix=zeros (0,0);

lineEquationMatrix=sym([]) ;

%convrejectiions=0

doprinting=0

Swhile (rejections<handles.failureBreakOut) ;

$replaced failure breakout with density - this will be modified so that

%$this can be an input. This is only reasonable once seeding can regularly

%get below the densities that are present in ice (see Kaasalanian).

while (density < .08)

$while (seeds < 30)
%$spawn random crystal dimensions - choosing the longest for overall
$diameter
crystallength=normrnd (handles.L mean,handles.L deviation);
crystalRadius=normrnd (handles.R mean, handles.R deviation);

%$Set bounding sphere limits
seedRadius=0.5* ((crystallLength”2+ (2*crystalRadius)*2)*0.5 );

$Attempt to seed this diameter object into the layer also seed
%duplicates where the object crosses a boundary

[layer, failed, ParticleNo,particle,overlapCrystalArray]=assemblelLayer4 (handl
es.length,handles.width, handles.thickness, seedRadius, layer,crystalRadius, se
eds) ;

if failed==1
rejections=rejections+l;

else
%create crystal
createHexCrystal (crystallength,crystalRadius, handles) ;
%$rotate crystal and its duplicates and create their absolute
%position

[NewNumberFacets, newlayerData, newlayerDataZ?, newlayerVertexData,crystalVerte
xData, linekEquation, planekEquation, boundingSphereNumber, gtyCrystalsSeeded]=ad
dCrystalToLayerd (particle,handles.length, handles.width, handles.thickness, se
eds,overlapCrystalArray);
$Convex hull check. This creates a matrix of line equations
%corresponding to the overlapping bounding spheres. These are then
%converted into an array of intersection points against all the
%$facets of the the seeding crystal. Finally there is a check to
$determine if any of these are within a bounding convex hull of the
$seeding crystals
hullRejection=0;
if size(overlapCrystalArray) >0
overlapCrystalArray=unique (overlapCrystalArray, 'rows"')
intersect=zeros (0,0);
intersectArray=zeros (0,0);
syms X y z t;
P = [x,v,2];
tic;
fprintf ('\n\nQverlap Equation Matrix: ')

vi=ismember (lineEquationMatrix(:,1:2),overlapCrystalArray(:,1:2), 'rows');
potentialOverlaplLineEquationMatrix=1lineEquationMatrix(vi,:);
toc
planeEquation;
tic;

fprintf ('\nPlane Equation: ')
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for g=(l:size (overlapCrystalArray))
for p=(l:size(planeEquation))
for j=(l:size(potentialOverlaplLineEquationMatrix))
$fprintf ('do they equal? $%s,
%s',potentialOverlaplLineEquationMatrix(j, 3),planeEquation(p,2));

if
(overlapCrystalArray(q,l)==potentialOverlaplLineEquationMatrix(j,1)) ...
&&
(overlapCrystalArray(q,2)==potentialOverlaplLineEquationMatrix(j,2)) ...
&&

(overlapCrystalArray (g, 3)==planeEquation (p,2))
$fprintf ('\n yeah, got here')

newfunction=subs (planeEquation (p, 3),P,potentialOverlaplLineEquationMatrix (j,
3:5))7
tO0=solve (newfunction) ;

pointl=subs (potentialOverlaplLineEquationMatrix(j,3:5),t,t0);
pointl=double (pointl) ;
intersectArray=vertcat (intersectArray,pointl);
end
if size(intersectArray) >0
[d1l,d2,d3]=size(crystalVertexData) ;
for i=(1:d3)

intersect=inhull (intersectArray,crystalVertexData(:,:,1));
if any(intersect)==
hullRejection=1;

disp (' Rejected by Convex Hull Test')
break
end
end
end
if hullRejection==1;
break
end
end
if hullRejection==1;
break
end
end
if hullRejection==1;
break
end
end
toc
tic
% % disp (' Revised plane equation')

o

bigArrayI=repmat (potentialOverlapLineEquationMatrix,size (planeEquation));
disp(' big arrayl')

toc

tic

o° oo o

o

bigArrayII=repmat (planeEquation, size (potentialOverlapLineEquationMatrix));
disp(' big arrayIIl')

toc

tic

bigArrayIII=[bigArrayI(:,3:5) bigArrayII(:,3)]

disp(' big arrayIIIl')

toc

o® 00 o° o oe

o\
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o\

tic
disp('new function')
$for t=(l:size(bigArrayIII))

o

o

newfunctionII]=subs (bigArrayIII(:,4),P,bigArrayIII(:,1:3))
%end

A% — o°

o

oo

toc
tic

o° oo

o\

[tO0]=solve (newfunctionII)

o

oo

for t=(l:size(bigArrayIII))

o

pointl=subs (potentialOverlaplLineEquationMatrix(:,3:5),t,t0);
end

pointl=double (pointl)

disp(' big arrayIII function solving')
toc

o° oo o

oo

oo

size (intersectArray)
toc

tic

fprintf ('\nConvex hull: ')

o° o° o o°

oo

toc

%As above though now lines and facets are reversed (needed for large
facets)

%$Test all the lines generated by the add crystal to layer against all
$facets already seeded Might not need this step...

o)

% Creates a facets corresponding to the overlapping bounding spheres. These
are then
% tested against the line matrix of the seeds to create intersection
points.
% The points are then tested against the convex hulls of the previously
seeded crystals
if hullRejection==

intersect=zeros (0,0);

intersectArray=zeros (0,0);

tic;

fprintf ('\n\nOverlap Plane Matrix (Reciprocation): ')

vi=ismember (planeMatrix(:,1:2),overlapCrystalArray(:,1:2), 'rows"');

potentialOverlapPlaneMatrix=planeMatrix(vi, :);
toc
tic;
fprintf ('\nLine Equation (Reciprocation): ')
for g=(l:size(overlapCrystalArray))

for j=(l:size(potentialOverlapPlaneMatrix))

for p=(l:size(lineEquation))

if
(overlapCrystalArray(q,l)==potentialOverlapPlaneMatrix(j,1)) ...
&&
(overlapCrystalArray (g, 2)==potentialOverlapPlaneMatrix(j,2)) ...
&&

(overlapCrystalArray (g, 3)==1lineEquation (p,2))
$fprintf ('\n yeah, got here')

newfunction=subs (potentialOverlapPlaneMatrix (j,3),P,lineEquation(p,3:5));
tO0=solve (newfunction) ;
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pointl=subs (lineEquation(p,3:5),t,t0);
pointl=double (pointl) ;
intersectArray=vertcat (intersectArray,pointl);

end
end
end
end
size (intersectArray)
toc

$Extract all the vertex data for the seeded crystals to test
against these

%$intersect points.

tic

fprintf ('\nAssemble array of vertices from existing vertice
matrix: ")

vi=ismember (emergingArrayVertexLocation(:,1:2),overlapCrystalArray(:,1:2),"'
rows');

potentialOverlapArrayVertexLocation=emergingArrayVertexLocation(vi, :);
c=1;
b=1;
testArrayOfCrystals=zeros;
for y=l:size(potentialOverlapArrayVertexLocation)
if y>1
if
potentialOverlapArrayVertexLocation (y, 1) ~=potentialOverlapArrayVertexLocati
on(y-1,1)...
||
potentialOverlapArrayVertexLocation (y,2)~=potentialOverlapArrayVertexLocati
on(y-1,2);
c=1;
b=b+1;
end
end

testArrayOfCrystals(c,1:3,b)=potentialOverlapArrayVertexLocation(y,3:5);
c=c+l;
end
toc
tic
fprintf ('\nConvex Hull (Reciprocation): ')
testArrayOfCrystals;
if size(intersectArray) >0
[dl,d2,d3]=size (testArrayOfCrystals);
for 1i=(1:d3)

intersect=inhull (intersectArray, testArrayOfCrystals (:,:,1));
if any(intersect)==
hullRejection=1;

disp (' Rejected by Convex Hull Test
(Reciprocation): ")
break
end
end
end
toc
end
end
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o\

%$just for reference to see how many were rejected
if (intersect>0) && (overlapping==1)
convrejectiions=convrejectiions+1;

o° oo oo

o

end
%1f any(intersect)==0 > replaced with line below
if hullRejection==0;

$from assemble layer

j=seeds;

for i=1l:ParticleNo
for g=1:3
layer (i+7j,q)=particle (i, q);
end

layer (i+j, 4)=crystalRadius;
%$layer (i+j, 5)=boundingCylinderHeight; oldcrap
layer (i+j,5)=crystalRadius;
layer (i+j, 6) =boundingSphereNumber;
layer (i+j,7)=1i;
seeds=seeds+l;
end

%Update volume - only seed once for duplicate particles as the
parts

$within the layer boundaries will only account for 1 complete

scrystal

$crystalVolume=pi*crystalRadius”2*crystallength; %* ParticleNo

crystalVolume=3/2*3".5*crystalRadius”2*crystallength;

totalVolume=totalVolume+tcrystalVolume;

totalCrystals=totalCrystals+gtyCrystalsSeeded;

uniqueCrystals=uniqueCrystals+1l;

density=totalVolume*handles.crystalDensity/ (handles.length*handles.width*ha
ndles.thickness);
%add these duplicates to the emerging array
emergingArrayFacets=emergingArrayFacets+NewNumberFacets;
emergingArrayVertex=vertcat (emergingArrayVertex, newlayerData) ;
planeMatrix=vertcat (planeMatrix,planeEquation) ;
$lineMatrix=vertcat (lineMatrix, line);
lineEquationMatrix=vertcat (lineEquationMatrix, lineEquation) ;
%add new structure to create a carriage return

emergingArrayVertexNewStructure=vertcat (emergingArrayVertexNewStructure, new
layerData?) ;

emergingArrayVertexNewStructure=vertcat (emergingArrayVertexNewStructure, 0) ;

emergingArrayVertexLocation=vertcat (emergingArrayVertexLocation, newlayerVer
texData) ;
else
rejections=rejections+l;
%eh - what's the next line trying to do???
%$layer (line(l,1)==layer(:,6),:)=[]

end
end
gmove this down so it does the below step every time
%end
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doprinting=doprinting+1;

if doprinting==5;
doprinting=0;

end

if doprinting==

%output all Emerging Array information to a file
output= fopen ('crystallayerFile ReadMe.txt',6 'w');
fprintf (output, 'Layer dimensions (%dx%dx%d)mm”3
\r\n',handles.length,handles.width, handles.thickness);
$fprintf (output, 'Layer width %d \r\n',handles.width);
$fprintf (output, 'Layer thickness %d \r\n',handles.thickness);
fprintf (output, 'rejections %d \r\n',handles.failureBreakOut) ;
fprintf (output, 'Crystals Seeded %d\r\n', totalCrystals);
fprintf (output, 'of which Unique %d\r\n',uniqueCrystals);
fprintf (output, 'Hex crystals \r\n');
fprintf (output, 'Crystal length $3.3f +/- %3.4f
\r\n',handles.L mean,handles.L deviation);
fprintf (output, 'Crystal radius %3.3f +/- %3.4f
\r\n',handles.R mean,handles.R deviation);
fprintf (output, 'Average indent (of length) %d%% \r\n',handles.aveIndent);
fprintf (output, 'Total Crystal Volume %5.5f \r\n', totalVolume);
fprintf (output, 'Crystal density %5.5f \r\n',handles.crystalDensity);
fprintf (output, 'Layer Density %5.5f \r\n',density);
fprintf (output, 'Location (x \t y \t\t z) \t\t Sphere rad \t Seed \t
Particle no. \r\n');
for i=(l:size(layer))

fprintf (output, '$5.5f \t $5.5f \t $5.5f \t %5.5f \t %d \t %d
\r\n',layer(i,1l),layer(i,2),layer(i,3),layer(i,4),layer (i, 6),layer(i,7));
end
fclose (output) ;
swhos
%save bobsybob.mat

Soutput all Emerging Array to a file
output=fopen ('crystallayerFile.txt','w');
fprintf (output, '%d \r\n',emergingArrayFacets);
for i=(l:size(emergingArrayVertex))
fprintf (output, '$d\r\n ',emergingArrayVertex (i));
end
for i=(l:size(emergingArrayVertexLocation))
fprintf (output, '$5.5f \t $5.5f \t %5.5f
\r\n',emergingArrayVertexLocation (i, 3),emergingArrayVertexLocation (i, 4),eme
rgingArrayVertexLocation(i,5));
end
fclose (output) ;

%output all Emerging Array to a file - with new structure
output=fopen ('crystallayerFile2.txt', 'w');
fprintf (output, '$d \r\n',emergingArrayFacets);
fprintf (output, '%d \r\n', totalCrystals);
insertReturn=1;
for i=(l:size(emergingArrayVertexNewStructure))
if insertReturn==
fprintf (output, '$d \r\n',emergingArrayVertexNewStructure (i));
insertReturn=0;
elseif emergingArrayVertexNewStructure (i)==
fprintf (output, "\r\n'");
insertReturn=1;
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else
fprintf (output, '$d ',emergingArrayVertexNewStructure (i));
end
end
for i=(l:size(emergingArrayVertexLocation))
fprintf (output, '$5.5f \t %$5.5f \t %5.5f
\r\n',emergingArrayVertexLocation (i, 3),emergingArrayVertexLocation (i, 4),eme
rgingArrayVertexLocation(i,5));
end
fclose (output) ;
%output all Emerging Array to a file - with new structure
output=fopen ('crystallayerFile3.txt','w');
fprintf (output, '%d \r\n',emergingArrayFacets) ;
fprintf (output, '%d \r\n',totalCrystals);
insertReturn=1;
for i=(l:size (emergingArrayVertexNewStructure))
if insertReturn==
fprintf (output, '%d \r\n',emergingArrayVertexNewStructure (i));
insertReturn=0;
elseif emergingArrayVertexNewStructure (i)==
fprintf (output, '\r\n') ;
insertReturn=1;
else
fprintf (output, '$d ',emergingArrayVertexNewStructure (i));
end
end

for i=(l:size(emergingArrayVertexLocation))

fprintf (output, '$5.5f \t %5.5f \t $5.5f \t %5.5f \t %5.5f
\r\n',emergingArrayVertexLocation (i, 1), emergingArrayVertexLocation (i, 2),eme
rgingArrayVertexLocation (i, 3),emergingArrayVertexLocation (i, 4),emergingArra
yVertexLocation (i, 5));
end
fclose (output) ;

o

output all FacetMatrix to a file

output=fopen ('planeMatrix.txt', 'w');

for i=(l:size(planeMatrix))

fprintf (output, '$5.5f \t %$5.5f \t %5.5f \t %5.5f \t $5.5f \t %5.5f \t

%$5.5f \t %5.5f \t %5.5f \t %5.5f \t %5.5f \t %5.5f \t %5.5f \t %$5.5f \t
%$5.5f \t %$5.5f \t %$5.5f \t %5.5f \t %5.5f \t %5.5f \r\n',
planeMatrix (i, 1:20));

% end

% fclose (output);

o° oo

o

Soutput all lineMatrix to a file
output=fopen ('lineEquationMatrix.txt','w');
outputLineEquation=char (lineEquationMatrix) ;
for i=(l:size (outputlLineEquation))
fprintf (output, '$s \t %s \t %s \t %s \r\n',outputLineEquation (i, 1:4));
end
fclose (output) ;

%end doprinting
end

%end moved to here
end
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function createHexCrystal (crystallength,crystalRadius,handles,hObject,
eventdata)
%$indent=handles.maxIndent;
indent =
normrnd ( (handles.aveIndent/2), (handles.avelIndent/6)) *crystalLength/100;
crystalType = randi (handles.crystalSeeds);
if crystalType==
crystalType='standardcolumn';
elseif crystalType==
crystalType='indentsinglecolumn';
else crystalType='indentdoublecolumn';
end
obliqueEnds=0; %randi(1,1,2)+1;

obliqueBasalFacet=0;%randi(1l,1,handles.obliqueBasalFacet) ;

hexcolumn ( crystallength,

crystalRadius, indent, crystalType, obliqueknds, obliqueBasalFacet,handles.outp
utFileName ) ;

Assemble Layer

function
[layer, failed, ParticleNo,particle,overlapCrystalArray]=assemblelayerd (lengt
h,width, thickness, crystalRadius, layer, trueRadius, seeds)

%$[layer, failed, ParticleNo,particle,overlapCrystalArray]=assemblelayer3 (hand
les.length,handles.width, handles.thickness, seedRadius, layer,crystalRadius) ;

%Set random location of particle to be seeded
overlapCrystals=zeros (0,0);
overlapCrystalArray=zeros (0,0);

failed=0;

ParticleNo=1;

overlap=0;

particle(l,1)=(rand*length+eps); %-(crystalRadius/2));
particle(1,2)=(rand*width+eps); %+ (crystalRadius/2));
particle (1, 3)=(rand*thickness+eps- (crystalRadius/2)) ;

4

%$Determine if the crystal overlaps the edges, if so, spawn another
%crystal shifted over to the opposite side.
if ((particle(l,1)+crystalRadius)>length);
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(l,1)-length;
particle (ParticleNo, 2)=particle(1,2);
particle (ParticleNo, 3)=particle (1, 3);
end
if ((particle(l,1)-crystalRadius)<0);
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)+length;
particle (ParticleNo, 2)=particle(1,2);
particle (ParticleNo, 3)=particle (1, 3);
end
if ((particle(l,2)+crystalRadius)>width);
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1);
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particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle (1, 3);

end

if ((particle(l,2)-crystalRadius)<0);
ParticleNo=ParticleNo+1;
particle (ParticleNo, 1l)=particle(1l,1);
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3);

end

if ((particle(l,3)+crystalRadius)>thickness);
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1);
particle (ParticleNo, 2)=particle(1,2);
particle (ParticleNo, 3)=particle (1, 3)-thickness;
end
if ((particle(1l,3)-crystalRadius)<0);
ParticleNo=ParticleNo+1;
particle (ParticleNo, 1l)=particle(1l,1);
particle (ParticleNo, 2)=particle(1,2);
particle (ParticleNo, 3)=particle (1, 3)+thickness;
end
%$Where it overlaps two edges, another diagonal particle needs to be
%added

%$length and width
if (((particle(l,1)+crystalRadius)>length) &&
((particle(l,2)+crystalRadius)>width));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(l,1)-length;
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle(1,3);
end
if (((particle(l,1)-crystalRadius)<0) && ((particle(l,2)-
crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)+length;
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3);
end
if (((particle(l,1)-crystalRadius)<0) &&
((particle(1,2)+crystalRadius)>width));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)+1length;
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle(1,3);
end

if (((particle(1l,1)+crystalRadius)>length) && ((particle(l,2)-
crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1l)-1length;
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle(1,3);
end

%length and thickness
if (((particle(l,1)+crystalRadius)>length) &&
((particle (1, 3)+crystalRadius)>thickness));
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ParticleNo=ParticleNo+1;

particle (ParticleNo,1l)=particle(1l,1l)-length;
particle (ParticleNo, 2)=particle(1,2);

particle (ParticleNo, 3)=particle (1, 3)-thickness;

end
if (((particle(l,1)-crystalRadius)<0) && ((particle(1l,3)-

crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo, 1) =particle(1l,1)+1length;
particle (ParticleNo, 2)=particle(1l,2);
particle (ParticleNo, 3)=particle (1, 3)+thickness;

end

if (((particle(1l,1)+crystalRadius)>length) && ((particle(l,3)-
crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(l,1)-length;
particle (ParticleNo, 2)=particle(1l,2);
particle (ParticleNo, 3)=particle(1l, 3)+thickness;
end
if (((particle(l,1)-crystalRadius)<0) &&
((particle (1, 3)+crystalRadius)>thickness));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)+length;
particle (ParticleNo, 2)=particle(1,2);
particle (ParticleNo, 3)=particle (1, 3)-thickness;
end
$width and thickness

if (((particle(1l,2)+crystalRadius)>width) &&
((particle (1, 3)+crystalRadius)>thickness));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1);
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle(l,3)-thickness;

end
if (((particle(l,2)-crystalRadius)<0) && ((particle(1l,3)-

crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1);
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3)+thickness;

end
if (((particle(l,2)+crystalRadius)>width) && ((particle(l,3)-

crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo, 1l)=particle(1l,1);
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle (1, 3)+thickness;
end
if (((particle(1l,2)-crystalRadius)<0) &&
((particle (1, 3)+crystalRadius)>thickness));
ParticleNo=ParticleNo+1;
particle (ParticleNo, 1) =particle(1l,1);
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3)-thickness;
end
%$length, width and thickness
if
(((particle(l,1)+crystalRadius)>length) && ( (particle(1l,2)+tcrystalRadius)>wid
th) && ((particle(l, 3)+crystalRadius)>thickness));
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ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1l)-length;
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle (1, 3)-thickness;
end
if (((particle(l,1)-crystalRadius)<0)&& ((particle(1l,2)-
crystalRadius)<0) && ((particle(l,3)-crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo, 1) =particle(1l,1)+1length;
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3)+thickness;
end

if (((particle(1l,1)+crystalRadius)>1length) &&((particle(1,2) -
crystalRadius)<0) && ((particle(l,3)+crystalRadius)>thickness));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(l,1)-length;
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3)-thickness;
end
if (((particle(l,1)-crystalRadius)<0) &&

((particle(1l,2)+crystalRadius)>width) && ((particle(l,3)-crystalRadius)<0));

ParticleNo=ParticleNo+1;

particle (ParticleNo,1l)=particle(1l,1)+length;

particle (ParticleNo, 2)=particle(1l,2)-width;

particle (ParticleNo, 3)=particle (1, 3)+thickness;
end

if

(((particle(1l,1)+crystalRadius) >length) && ( (particle(1l,2)+tcrystalRadius)>wid

th) && ((particle(l,3)-crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1l)-length;
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle(l, 3)+thickness;
end
if (((particle(l,1)-crystalRadius)<0)&& ((particle(1l,2)-
crystalRadius)<0) && ((particle(l,3)+crystalRadius)>thickness));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)+length;
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3)-thickness;
end
if (((particle(l,1)+crystalRadius)>length) && ((particle(1l,2)-
crystalRadius)<0) && ((particle(l,3)-crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)-length;
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3)+thickness;
end
if (((particle(l,1)-crystalRadius)<0) &&
((particle(1,2)+crystalRadius)>width) &&
((particle(1l,3) +crystalRadius)>thickness));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)+length;
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle (1, 3)-thickness;
end

%Next check if the crystal(s) overlaps with an existing crystal.
%$so reject.

104

If



%$for each particle, if x, y and z locations of the two particles
%overlaps
Sparticle();
if seeds>0
for i=l:ParticleNo
a=particle (i, :);
b=layer(:,1:3);
%determine the separation of this particle with all others
%in the layer
separation=bsxfun (@minus, a,b) ;
%convert this into a two scalar gaps as as crystals tend to
%be horizontal
a=separation(:,1)."2;
b=separation (:,2).72;
c=separation(:,3)."2;
minSeparation=(atb+c) .”.5;

%$determine if any of these gaps is less than the sum of the
Sradii
combinedRadii= (bsxfun (@plus, layer(:,4),crystalRadius));
testForGap=minSeparation-combinedRadii;

%get the crystals that overlap, 6th column in the layer
sarray

layer;

overlapCrystals=layer ((testForGap<0),6:7);
overlapCrystals(:,3)=1;

overlapCrystalArray=vertcat (overlapCrystalArray,overlapCrystals);

%$this pulls out an array of negatives. If there is a
%$negative, then there is overlap.
StestForGap=size (testForGap (find(testForGap<0)),1)

Gap=0;

for p=l:size(testForGap)
if testForGap (p)<0

Gap=Gap+l;
end
end
%allow for 20 overlaps before rejecting, the overlaps will
%be tested in more detail when replacing spheres with
%crystals
if Gap>3
overlap=1;
end
end
end
if overlap==
failed=1;
else %Else seed.
particle ()
j=seeds;
for i=l:ParticleNo
for g=1:3
layer (i+]j,q)=particle(i,q);
end
layer (i+j, 4)=crystalRadius;

d° o o o° o° o o°

oo
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o\

layer (i+3j,5)=boundingCylinderHeight;
layer (i+j, 6) =BoundingSphereNumber+ParticleNo;
seeds=seeds+l;

end

o° o

oo

end
end

Hex Column

function [ crystalFile ] = hexcolumn( 1, r, indent, crystalSelection,
obliqueEnds, obliqueBasalFacet,outputfile )

%1

sr

%indent

%create crystal data for a hexagonal colum

%$Test input parameters

%crystalSelection = 'indentdoublecolumn';
%obliqueEnds =2;

%obliqueBasalFacet = 20;

%indent=.5;

$1=-1;
sr=1;

Soutputfile='temptcrystal.txt'

crystalPoints = textread('allcolumns.points','%s', 'delimiter',
'"\n', 'whitespace', '');

rtt = (3°.5)/2;
totalVertexes = 0;
vertexPerSide 0;
totalFaces = 0;
quitOut=0;

v=0;

k=0;

%Read the file from the name given to the end point of the crystal. Convert
%the data into an array of faces.
for i=l:size(crystalPoints)
if quitOut == 1;
break
end

if strcmp(crystalPoints (i), crystalSelection)==

for (g=i:size(crystalPoints))

if strcmp(crystalPoints(qg), 'n') == 1
totalFaces = totalFaces+1;
v=v+1l;
vertexPerSide (v)= str2double (crystalPoints (g+l));
totalVertexes = totalVertexes + vertexPerSide (v);
for (3 = (gt2): (g+tl+str2double(crystalPoints(g+l))))
k=k+1;
crystalVertexData (k,1:3) = str2double(crystalPoints(j)):;
end
end
if strcmp (crystalPoints(qg),'e') == 1
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quitOut=1;
break
end

end
end

end

%Set the locations of the various corners(points) of a hex column based on
the
%$dimensions provided.

VertexData (13, 3)= —-indent;
VertexData(14,3) = -1 + indent;
VertexData(l,1l) = r;
VertexData(l,2) = 0;
VertexData (2,1) = r/2;
VertexData(2,2) = -rtt*r;
VertexData (3,1) = -r/2;
VertexData (3,2) = -rtt*r;
VertexData(4,1) = -r;
VertexData(4,2) = 0;
VertexData (5,1) = -r/2;
VertexData (5,2) = rtt*r;
VertexData (6,1) = r/2;
VertexData (6,2) = rtt*r;
VertexData (13,1) = 0;
VertexData(13,2) = 0;

for 1 = (1:06)

VertexData (i + 6,1) VertexData (i, 1) ;

VertexData (i + 6,2) VertexData (i, 2);

end

%$data for the 13th and 14th corners are only needed where there are points
%or indents in the hex column ends
VertexData(1l4,1) = VertexData (13,1);

VertexData(14,2) = VertexData(l3,2);
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if obliqueEnds > 0
for i = 1:6
%tand as angle is in degrees

VertexData(i,3) = 0 - ((VertexData(l,1) -
VertexData (i, 1)) *tand(obliqueBasalFacet)) ;

end
if obliqueEnds ==
for i = 7:12

VertexData(i,3) = -1 + ((VertexData(4,1) +
VertexData (i, 1)) *tand(obliqueBasalFacet)) ;

end
else
for i = 7:12
VertexData (i, 3) = -1;
end
end
else
for 1 = 1:6
VertexData (i,3) = 0;
end
for 1 = 7:12
VertexData(i,3) = -1;
end

end

$Apply the vertex data(corners/points) for the crystal to the crystal
%$points in order to generate the various faces and output to the file
%indicated. This generates a file of the individual corner points of the
$facets in the file.
output= fopen (outputfile, 'w');
fprintf (output, '$d \r\n',totalFaces);
for i=(l:totalFaces)

fprintf (output, '$d\r\n ',vertexPerSide (i));
end

for i=(l:size(crystalVertexData))
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fprintf (output, '$5.5f \t %5.5f \t %5.5f
\r\n',VertexData (crystalVertexData(i,1),1),VertexData (crystalVertexData (i,2
),2) ,VertexData (crystalVertexData (i, 3),3));
i = 1i+3;
end
fclose (output) ;

Add Crystal to Layer

%This is a modified version of makelayer2. It takes the accepted crystal,
%$rotates it and adds it to the layer as it is being assemblLed. It may have
%$to add multiple crystals as where a crystal crosses a boundary, a second
%crystal is added on the opposite side. As multiple boundaries can be
%crossed, multiple crystals can be seeded.
function
[NewNumberFacets, newlayerData, newlayerData2, newlayerVertexData,crystalVerte
xData, lineEquation, planeEquation, boundingSphereNumber, gtyCrystalsSeeded]=ad
dCrystaltolayer4 (particle, length,width, thickness, seeds, overlapCrystalArray)

o°

[NewNumberFacets, newlayerData, newlayerData?, newlayerVertexData,crystalVerte
xData, lineEquation,planekEquation,boundingSphereNumber]=addCrystalToLayer3 (p
article,handles.length,handles.width,handles.thickness, seeds, overlapCrystal
Array,boundingSphereNumber) ;

gtyCrystalsSeeded=0;
boundingSphereNumber=seeds+1;
newlayerData=zeros;

newlayerData2=zeros;

newlayerVertexData=zeros;

%$this is the basic crystal to be seeded.
crystal=dlmread('seedCrystal.txt');
%crystal=dlmread ('roundedHexD0O0O5H01£f09f12.dat");

noFacets=crystal (l,1); %first numer in crystal file is number of facets
% each facet will have a number of vericies associated with it. Number of
% verticies for nth facet given in row n+l
noVerticies=crystal (2:noFacets+1,1);
% Each vertex has x,y and z data in 3 colums after the list containing the
% number of verticies per facet
vertexData=crystal (noFacets+2:end,1:3);
%Centre of Gravity for the crystal
spl=0;
sp2=0;
sp3=0;
n=0;
for r=(l:noFacets)
for s=(l:noVerticies(r))

n=n+1;

spl=vertexData(n,1l) tspl;

sp2=vertexData(n,2) tsp2;

sp3=vertexData (n, 3) +sp3;

end

end
spl=spl/n;
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sp2=sp2/n;
sp3=sp3/n;

%get data on the seeding points for each crystal
%0ld method
$layerfile=dlmread('mica.txt');
%$seedPointData=layerfile(l:end,1:3);
%new method
seedPointData=particle;

%$Determine total number of facets

%size (seedPointData,l) is the number of rows, i.e. the number of crystals
in

%the layer

% remove the; to generate the data to the command screen-note that only

% so much will be shown

%0ld method, now added during seeding

o\

NewNumberFacets=size (seedPointData, l) *noFacets;
3=0;
k=1;
newlayerData2 (1, 1)=noFacets;
for i=(1:NewNumberFacets)

o° oo oP

o\

% k=k+1;

% j=j+1;

% if j>noFacets

% J=1;

% newlayerDataZ2 (k,1)=0;

% k=k+1;

% newlayerDataZ2 (k, 1) =noFacets;
% k=k+1;

% end

o\

newlayerData (i, 1)=noVerticies (J);
$for layoutz2
newlayerData?2 (k,1l)=noVerticies (j);
end
% remove the; to generate the data to the command screen-note that only
% so much will be shown
newlayerDataZ2;

o° o o o° o° o°

oo

%take the x,y,z coordinates of seed point data and off-set each of the
%points for the crystal file by this amount and place the whole set in the
snew layer vertex data
for p=(l:size(seedPointData,l))

vertexData=crystal (noFacets+2:end, 1:3); Srefresh vertex data each pass

%it is at this point that we need to adjust the vertex data from its
%original to a rotated crystal before updating the crystal.

%Crystal Rotation

alpha euler=pi*rand*2;

beta euler=acos(1.0-2.0*rand);

gamma_euler=pi*rand*2;

sl=sin(alpha euler);
s2=sin (beta euler);
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s3=sin
cl=cos
c2=cos
c3=cos

gamma_euler) ;
alpha euler);
beta euler);
gamma_euler) ;

o~~~ —~

rll=-c2*sl*s3+cl*c3;
rl2=-c2*sl*c3-cl*s3;
rl3=s2*sl;
r2l=c2*cl*s3+sl*c3;
r22=c2*cl*c3-sl1*s3;
r23=-s2*cl;
r31=s2*s3;
r32=s2*c3;
r33=c2;
z=0;
for r=(l:noFacets)
for s=(l:noVerticies(r))
z=z+1;
tempVertexData (z,1l)=vertexData(z,1l)-spl;
tempVertexData (z,2)=vertexData(z,2) -sp2;
tempVertexData (z, 3) =vertexData(z, 3) -sp3;
end
end
z=0;
for r=(l:noFacets)
for s=(l:noVerticies(r))
z=z+1;

vertexData (z,1l)=tempVertexData(z,1l) *rll+tempVertexData (z,2) *rl2+tempVertexD
ata(z,3)*rl3;

vertexData (z,2)=tempVertexData(z,1l) *r2l+tempVertexData (z,2) *r22+tempVertexD
ata(z,3) *r23;

vertexData (z, 3) =tempVertexData (z,1l) *r3l+tempVertexData (z,2) *r32+tempVertexD
ata(z,3)*r33;
%vertexData(z,4)=p;
end
end

end

%$finish buggering about with the crystal file vertex data and apply
%new crystal data to seedpoints for the crystal and store data

snewlayerVertexData=zeros;

%below needs to be updated so that particles which completely lie
soutside the bounds of the box are completely removed. This means
Swriting to a temp array before then adding to the full array...
%1f all points are>max z or<min z reject
%$if all points are>max y or<min y reject
%$if all points are>max x or<min x reject

0;
1;
O.

’

= ﬁ‘u

n=0;

NewNumberFacets=0;

snewlayerData=zeros;

for p=(l:size(seedPointData,l))
maxX=0;
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minX=width;
maxY¥=0;
minY=length;
maxz=0;
minZ=thickness;

for g=(l:size(vertexData,l));
tempVertexData (g, 1:3)=vertexData(qg,1:3) +seedPointData (p,1:3);

if maxX<tempVertexData (q,1)
maxX=tempVertexData (g, 1)

end

if minX>tempVertexData (g, 1)
minX=tempVertexData (g, 1) ;

end

if max¥Y<tempVertexData (g, 2)
maxY=tempVertexData (q,2);

end

if minY>tempVertexData (g, 2)
minY=tempVertexData (g, 2) ;

end

if maxZ<tempVertexData (g, 3)
maxZ=tempVertexData (g, 3) ;

end

if minZ>tempVertexData (g, 3)
minZ=tempVertexData (g, 3) ;

end

end

%This bit removes any crystals that lie outside the layer

if (maxX<=0) || ( max¥<=0) || (maxZ<=0) || (minX>=length) ||
(minY>=width) || (minZ>=thickness)
$maxX minX maxyY minY
maxz minZz

%maybe not remove this next line as in truth, the seeds
%seeds=seeds-1
else
gtyCrystalsSeeded=qgtyCrystalsSeeded+1;
%adding facets
NewNumberFacets=NewNumberFacets+tnoFacets;
%adding vertex data
%set below outside the loop

%$3=0;
$k=1;
if k==
newlayerData2 (1, 1)=noFacets;
end
for i=(l:noFacets)
k=k+1;
j=3+1;
m=m+1;
if j>noFacets
j=1;
newlayerDataZ2(k,1)=0;
k=k+1;
newlayerDataZ2 (k, 1) =noFacets;
k=k+1;
end

newlayerData (m, 1) =noVerticies (j);
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$for layout2
newlayerDataZ2 (k,1l)=noVerticies (j);
end
% remove the; to generate the data to the command screen-note that

only

% so much will be shown

newlayerDataZ2;

for g=(l:size(vertexData,l)):;
newlayerVertexData (((n) * (size (vertexData,l)))+q,1l)=boundingSphereNumber;

newlayerVertexData (((n) * (size (vertexData,l)))+q,2)=p;

newlayerVertexData (((n) * (size (vertexData,1l)))+q,3:5)=vertexData (g, 1:3) +tseed
PointData (p,1:3);

end

n=n+1;

for g=(l:size(vertexData,l));

crystalVertexData(g,1:3,n)=vertexData(qg,1:3)+seedPointData(p,1:3);
end
% remove the; to generate the data to the command screen-note that

only
% so much will be shown
newlayerVertexData;
end
end
% for p=(l:size (seedPointData,l))
% for g=(l:size(vertexData,l));
% newlayerVertexData ( ((p-
1) *(size (vertexData,l)))+q,1l:3)=vertexData(qg,1:3)+seedPointData(p,1:3);
% end

o\

end

%$This section generates the crystal layer file. The first line is the
$number of facets, then it is a loop for each facet and then the array of
$vertex data. Currently being stored as crystalfile.txt

output=fopen ('crystalfile.txt', 'w');
fprintf (output, '$d \r\n', NewNumberFacets) ;
for i=(l:size (newlayerData))
fprintf (output, '$d\r\n ', newlayerData (i));
end

for i=(l:size(newlayerVertexData))

fprintf (output, '$d\t %d \t %5.5f \t %5.5f \t %5.5f
\r\n',newlayerVertexData (i, 1), newlayerVertexData (i,2),newlayerVertexData (i,
3:5));
end

fclose (output) ;
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%generate data for the facet matrix-this is used to determine overlaps
tbetween crystals
currentPositionInVertexData=0;
for i=(1:NewNumberFacets)
facet (i, 1) =boundingSphereNumber;
facet (i,2)=newlayerData(i);

o® d° o o° oe

o

for j=(l:newlayerData (i))
p=(j-1)*3;
for k=(1:3)

o° oo

o

facet (i, 2+p+k)=newlayerVertexData (currentPositionInVertexData+j, k) ;
end
end
currentPositionInVertexData=currentPositionInVertexData+j;
end

o o oP

oo

%generate data for the line matrix-again, used for overlaps between
%crystals

currentPositionInVertexData=0;

a=1;

for i=(1:NewNumberFacets)

o° d° d° o° oe

o

for j=(l:newlayerData(i))
if j==newlayerData (i)
endpoint=currentPositionInVertexData+l;
else endpoint=currentPositionInVertexData+j+1;
end
for k=(1:3)
line (g, 1) =boundingSphereNumber;

o® d° o° d° oP° oe

oo

line (g, k+l)=newlayerVertexData (currentPositionInVertexData+j, k) ;
% line (g, k+4)=newlayerVertexData (endpoint, k) ;

% end

% q=q+1;

oo

end
currentPositionInVertexData=currentPositionInVertexData+j;

o

o\

end

%$This is new stuff, essentially generating a matrix of the line functions
%and the facet planes rather than calculating these on the fly every time.

%generate data for the plane matrix-this is used to determine overlaps
%between crystals
currentPositionInVertexData=1;
planeEquation=sym([]) ;
size (overlapCrystalArray) ;
%$if size(overlapCrystalArray) >0

for i=(1:NewNumberFacets)

planeEquation (i, 1) =boundingSphereNumber;

planeEquation (i, 2)=newlayerVertexData (currentPositionInVertexData,?2);
%get plane points for the facet from 3 points in the plane
$P1 P2 P3
Pl=newlayerVertexData (currentPositionInVertexData,3:5);
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P2=newlayerVertexData (currentPositionInVertexData+1l,3:5);
P3=newlayerVertexData (currentPositionInVertexData+2,3:5);

normal=cross (P1-P2, P1-P3);

Syms x y z;

P=[x, Yr z];

planefunction=dot (normal, P-P1l);

planeEquation (i, 3)=planefunction;
%$dot (P-P1, normal);

$realdot=@ (u, v) u*transpose(v);

$realdot (P-P1l,normal) ;

currentPositionInVertexData=currentPositionInVertexData+newlayerData (i) ;
end

%end

planeEquation;

%generate data for the line Equation matrix-again, used for overlaps

between

%crystals. Maybe replace the above line matrix?

%Despite being only 8 facets to a hex column,this means that there are 36
%lines (6x4 + 8x2), even though some of the lines are effectively the same.

currentPositionInVertexData=0;
g=1;
lineEquation=sym([0,0,0,01);
for i=(1:NewNumberFacets)

for j=(l:newlayerData(i))
if j==newlayerData (i)
endpoint=currentPositionInVertexData+l;
else endpoint=currentPositionInVertexData+j+1;
end

P4=newlayerVertexData (currentPositionInVertexData+3j,3:5);
PS5=newlayerVertexData (endpoint, 3:5);

syms t;

line2=P4+t* (P5-P4) ;

line2(1,1);

line2(1,2);

line2(1,3);

lineEquation(g,3:5)=1ine2(1,1:3);
lineEquation (g, 1l)=boundingSphereNumber;

lineEquation (g, 2)=newlayerVertexData (currentPositionInVertexData+j,2);
g=q+1l;
end

currentPositionInVertexData=currentPositionInVertexData+7j;
end

%$save crystal.mat

Show Crystals

function h=showcrystals (fname, b, g)
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%% Load and display a

% h = figure handle

% fname = full path to .crystal file
% b = beta euler angle

% g = gamma euler angle

o

o

Function written by Chris Stopford July 2009.

o

import data from .crystal file
if 1==2 % test!
crystal=dlmread('1ll 7 dl13 7 flat.crystal');

b=10;

crystal=dlmread (fname) ;
end

noFacets=crystal(1l,1);
noPrismFacets=6;

noBasalFacets=noFacets-noPrismFacets;

o

% verticies for nth facet given in row n+l

noVerticies=crystal (2:noFacets+1,1);

[)

o)

% number of verticies per facet

vertexData=crystal (noFacets+2:end,1:3);
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$first numer in crystal file is number of

each facet will have a number of vericies associated with it.

.crystal file in a MATLAB figure window

c.stopford@herts.ac.uk

facets

% this is 6 for hexagonal columns

Number of

% Each vertex has x,y and z data in 3 colums after the list containing the



Q

% consider facet 1 first (for easy programming!)
individualFacet noVerticies=noVerticies(1);
individualFacet vertexStartPoint=1l;
individualFacet vertexEndPoint=noVerticies(1l);

% select relevant vertex coordinate data:

individualFacet vertexData=vertexData (individualFacet vertexStartPoint:indi
vidualFacet vertexEndPoint, :);

[)

% plot facet

tri=delaunay(individualFacet vertexData(:,1),individualFacet vertexData(:,2
));

trisurf (tri,individualFacet vertexData(:,1),individualFacet vertexData(:,2)
,individualFacet vertexData(:,3), 'facecolor', 'blue', 'edgecolor', 'blue')
hold on

o)

% add black wireframe - need to add first facet to the end to close edges

individualFacet vertexData=[individualFacet vertexData;individualFacet vert
exData(l,:)];

plot3(individualFacet vertexData(:,1),individualFacet vertexData(:,2),indiv
idualFacet vertexData(:,3), 'black')

set (gca, 'DataAspectRatio', [1 1 117);

o\
o\

for facet=2:noFacets
% collect relevent data:
individualFacet noVerticies=noVerticies (facet);

individualFacet vertexStartPoint=sum(noVerticies (l:facet-1))+1;

individualFacet vertexEndPoint=sum(noVerticies (l:facet));

[)

% select relevant vertex coordinate data:
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individualFacet vertexData=vertexData (individualFacet vertexStartPoint:indi
vidualFacet vertexEndPoint, :);

Q

% plot facet

x=vertexData (:,1);
y=vertexData(:,2);
z=vertexData (:,3);

K = convhulln([x v z]);

%$Mica Comment - the line below colours everything blue!!!
$trisurf (X, x,y,z, 'edgecolor', 'none', 'facecolor', 'blue', 'facealpha',0.1);

% [X,Y]=meshgrid(x,y);
%$Z=griddata(x,vy,z,X,Y);

$surf (X,Y,7)

tri=delaunay(individualFacet vertexData(:,1),individualFacet vertexData(:,2
))

trisurf (tri,individualFacet vertexData(:,1),individualFacet vertexData(:,2)
,individualFacet vertexData(:,3), 'facecolor', 'blue', 'edgecolor', 'blue')

% add black wireframe - need to add first facet to the end to close
edges

individualFacet vertexData=[individualFacet vertexData;individualFacet vert
exData(l,:)];

h=plot3 (individualFacet vertexData(:,1),individualFacet vertexData(:,2),ind
ividualFacet vertexData(:,3), 'black');

end

Sandbox (Tetris)

function varargout=Sandbox Tetris (varargin)

handles.length=2;

handles.width=2;

handles.thickness=2;
handles.failureBreakOut=10;
handles.outputFileName="'seedCrystal.txt';
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handles.L mean=0.3;
handles.L deviation=0.1;
handles.R mean=0.05;
handles.R deviation=0.01;
handles.aveIndent=0.0;
handles.crystalDensity=0.9167;
% case 'Hex Columns Only'
handles.crystalSeeds=1;
case 'Hex/Single Indents'
handles.crystalSeeds=2;
case 'Hex/Sing/Doub'
handles.crystalSeeds=3;
handles.obliqueBasalFacet=0;

o oo oP

o

rejections=0;

uniqueCrystals=0;

totalCrystals=0;

layer=zeros;

seeds=0;

crystalNo=0;

emergingArrayFacets=0;

emergingArrayVertex=zeros (3,0);

emergingArrayVertexNewStructure=zeros(3,0);

emergingArrayVertexLocation=zeros (3,0);

totalvVolume=0;

density=0;

planeMatrix=zeros (0,0);

lineMatrix=zeros (0,0);

lineEquationMatrix=sym([])

%convrejectiions=0

doprinting=0;

Swhile (rejections<handles.failureBreakOut) ;

Sreplaced failure breakout with density - this will be modified so that

%$this can be an input. This is only reasonable once seeding can regularly

%get below the densities that are present in ice (see Kaasalanian).

while (density < .08)

$while (seeds < 30)
%spawn random crystal dimensions - choosing the longest for overall
%diameter
crystallLength=normrnd (handles.L mean, handles.L deviation);
crystalRadius=normrnd (handles.R mean, handles.R deviation);

%Set bounding sphere limits - hypotenuse of half length and radius
seedRadius=( (crystallength/2)"2 + crystalRadius”2 )"0.5 ;

$Attempt to seed this diameter object into the layer also seed
%$duplicates where the object crosses a boundary

[layer, failed, ParticleNo, particle,overlapCrystalArray]=assemblelLayer Tetris
(handles.length,handles.width, handles.thickness, seedRadius, layer,crystalRad
ius, seeds) ;

if failed==
rejections=rejections+1;

else
%create crystal
createHexCrystal (crystallength,crystalRadius, handles) ;
%$rotate crystal and its duplicates and create their absolute
%position
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[NewNumberFacets, newlayerData,newlayerDataZ, newlayerVertexData,crystalVerte
xData, lineEquation, planeEquation, boundingSphereNumber, gtyCrystalsSeeded]=ad
dCrystalToLayer Tetris(particle,handles.length,handles.width,handles.thickn
ess, seeds,overlapCrystalArray) ;
%Convex hull check. This creates a matrix of line equations
%corresponding to the overlapping bounding spheres. These are then
$converted into an array of intersection points against all the
$facets of the the seeding crystal. Finally there is a check to
%determine if any of these are within a bounding convex hull of the
%$seeding crystals
hullRejection=0;
if size(overlapCrystalArray) >0
overlapCrystalArray=unique (overlapCrystalArray, 'rows"')
intersect=zeros (0,0);
intersectArray=zeros (0,0);
syms X y z t;
P = [XIYIZJ;
tic;
fprintf ("\n\nQverlap Equation Matrix: ')

vi=ismember (lineEquationMatrix(:,1:2),overlapCrystalArray(:,1:2), 'rows');
potentialOverlaplLineEquationMatrix=lineEquationMatrix(vi, :);
toc
planeEquation;
tic;

fprintf ('\nPlane Equation: ')
for g=(l:size(overlapCrystalArray))
for p=(l:size(planeEquation))
for j=(l:size(potentialOverlapLineEquationMatrix))
$fprintf ('do they equal? %s,
%s',potentialOverlaplineEquationMatrix (j,3),planeEquation(p,2));

’

if
(overlapCrystalArray(q,l)==potentialOverlaplLineEquationMatrix(j,1)) ...
&&
(overlapCrystalArray (g, 2)==potentialOverlaplLineEquationMatrix(j,2)) ...
&&

(overlapCrystalArray(q, 3)==planeEquation (p,2))
$fprintf ('\n yeah, got here')

newfunction=subs (planeEquation (p,3),P,potentialOverlapLineEquationMatrix (7,
3:5)) 7
tO0=solve (newfunction) ;

pointl=subs (potentialOverlaplLineEquationMatrix(j,3:5),t,t0);
pointl=double (pointl) ;
intersectArray=vertcat (intersectArray,pointl);
end
if size(intersectArray) >0
[d1l,d2,d3]=size(crystalVertexData);
for 1=(1:d3)

intersect=inhull (intersectArray,crystalVertexData (:,:,1));
if any(intersect)==
hullRejection=1;
disp (' Rejected by Convex Hull Test')
break
end
end
end
if hullRejection==1;
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break

end
end
if hullRejection==1;
break
end
end
if hullRejection==1;
break
end
end
toc

%As above though now lines and facets are reversed (needed for large
facets)

%$Test all the lines generated by the add crystal to layer against all
%$facets already seeded Might not need this step...

% Creates a facets corresponding to the overlapping bounding spheres. These

°

are then
% tested against the line matrix of the seeds to create intersection

°

points.
% The points are then tested against the convex hulls of the previously

seeded crystals
if hullRejection==
intersect=zeros (0,0);
intersectArray=zeros (0,0);
tic;
fprintf ('"\n\nOverlap Plane Matrix (Reciprocation): ')

vi=ismember (planeMatrix(:,1:2),overlapCrystalArray(:,1:2), 'rows');

potentialOverlapPlaneMatrix=planeMatrix(vi, :);
toc
tic;
fprintf ('\nLine Equation (Reciprocation): ')
for g=(l:size (overlapCrystalArray))

for j=(l:size(potentialOverlapPlaneMatrix))

for p=(l:size(lineEquation))

if
(overlapCrystalArray (g, l)==potentialOverlapPlaneMatrix(j, 1)) ...
&&
(overlapCrystalArray (g, 2)==potentialOverlapPlaneMatrix(j,2)) ...
&&

(overlapCrystalArray(q, 3)==1lineEquation (p,2))
$fprintf ('\n yeah, got here')

newfunction=subs (potentialOverlapPlaneMatrix (j,3),P,lineEquation(p,3:5));
tO0=solve (newfunction) ;
pointl=subs (lineEquation(p,3:5),t,t0);
pointl=double (pointl) ;
intersectArray=vertcat (intersectArray,pointl);

end
end
end
end
size (intersectArray)
toc

$Extract all the vertex data for the seeded crystals to test

against these
%intersect points.
tic
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fprintf ('\nAssemble array of vertices from existing vertice
matrix: ')

vi=ismember (emergingArrayVertexLocation(:,1:2),overlapCrystalArray(:,1:2),"'
rows');

potentialOverlapArrayVertexLocation=emergingArrayVertexLocation (vi, :);
c=1;
b=1;
testArrayOfCrystals=zeros;
for y=l:size(potentialOverlapArrayVertexLocation)
if y>1
if
potentialOverlapArrayVertexLocation (y, 1) ~=potentialOverlapArrayVertexLocati
on(y-1,1)...
|l
potentialOverlapArrayVertexLocation (y,2) ~=potentialOverlapArrayVertexLocati
on(y-1,2);
c=1;
b=b+1;
end
end

testArrayOfCrystals(c,1:3,b)=potentialOverlapArrayVertexLocation(y,3:5);
c=c+1l;

end

toc

tic

fprintf ("\nConvex Hull (Reciprocation): ')

testArrayOfCrystals;

if size(intersectArray) >0
[d1,d2,d3]=size(testArrayOfCrystals);
for i=(1:d3)

intersect=inhull (intersectArray, testArrayOfCrystals(:,:,1));
if any(intersect)==1
hullRejection=1;
disp (' Rejected by Convex Hull Test
(Reciprocation): ")
break
end
end
end
toc
end
end

if hullRejection==0;

$from assemble layer

Jj=seeds;

for i=l:ParticleNo
for g=1:3
layer (i+j,q)=particle (i, q);
end

layer (i+j,4)=crystalRadius;

%$layer (i+j,5)=boundingCylinderHeight; oldcrap
layer (i+j, 5)=crystalRadius;

layer (i+3j, 6) =boundingSphereNumber;

layer (i+3,7)=1i;

seeds=seeds+1;
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end

%Update volume - only seed once for duplicate particles as the
parts

$within the layer boundaries will only account for 1 complete

%crystal

crystalVolume=3/2*3".5*crystalRadius”2*crystallLength;

totalVolume=totalVolume+crystalVolume;

totalCrystals=totalCrystals+gtyCrystalsSeeded;

uniqueCrystals=uniqueCrystals+1l;

density=totalVolume*handles.crystalDensity/ (handles.length*handles.width*ha
ndles.thickness) ;
%add these duplicates to the emerging array
emergingArrayFacets=emergingArrayFacets+NewNumberFacets;
emergingArrayVertex=vertcat (emergingArrayVertex, newlayerData) ;
planeMatrix=vertcat (planeMatrix,planeEquation) ;
%$lineMatrix=vertcat (lineMatrix, line) ;
lineEquationMatrix=vertcat (lineEquationMatrix, lineEquation) ;
%add new structure to create a carriage return

emergingArrayVertexNewStructure=vertcat (emergingArrayVertexNewStructure, new
layerData?) ;

emergingArrayVertexNewStructure=vertcat (emergingArrayVertexNewStructure,0) ;

emergingArrayVertexLocation=vertcat (emergingArrayVertexLocation,newlayerVer
texData) ;

else
rejections=rejections+1;
end
end
gmove this down so it does the below step every time
%end

doprinting=doprinting+1;

if doprinting==5;
doprinting=0;

end

if doprinting==0

Soutput all Emerging Array information to a file

output= fopen ('crystallayerFile ReadMe.txt',6 'w');

fprintf (output, 'Layer dimensions (%dx%dx%d)mm”3
\r\n',handles.length,handles.width, handles.thickness);

$fprintf (output, 'Layer width %d \r\n',handles.width) ;

$fprintf (output, 'Layer thickness %d \r\n',6handles.thickness);
fprintf (output, 'rejections %d \r\n',handles.failureBreakOut) ;
fprintf (output, 'Crystals Seeded %d\r\n', totalCrystals);

fprintf (output, 'of which Unique %d\r\n',uniqueCrystals);

fprintf (output, 'Hex crystals \r\n');

fprintf (output, 'Crystal length %$3.3f +/- %3.4f

\r\n',handles.L mean,handles.L deviation);

fprintf (output, 'Crystal radius %3.3f +/- %3.4f

\r\n',handles.R mean,handles.R deviation);

fprintf (output, 'Average indent (of length) %d%% \r\n',6handles.avelndent) ;
fprintf (output, 'Total Crystal Volume %5.5f \r\n', totalVolume);
fprintf (output, 'Crystal density %5.5f \r\n',handles.crystalDensity);
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fprintf (output, 'Layer Density %5.5f \r\n',density);
fprintf (output, 'Location (x \t y \t\t z) \t\t Sphere rad \t Seed \t
Particle no. \r\n');
for i=(l:size(layer))

fprintf (output, '$5.5f \t %$5.5f \t %5.5f \t %5.5f \t %d \t %d
\r\n',layer(i,1),layer(i,2),layer(i,3),layer(i,4),layer (i, 6),layer(i,7));
end
fclose (output) ;
swhos
%save bobsybob.mat

Soutput all Emerging Array to a file
output=fopen ('crystallayerFile.txt','w');
fprintf (output, '%d \r\n',emergingArrayFacets);
for i=(l:size(emergingArrayVertex))
fprintf (output, '$d\r\n ',emergingArrayVertex (i));
end
for i=(l:size(emergingArrayVertexLocation))
fprintf (output, '$5.5f \t $5.5f \t %5.5f
\r\n',emergingArrayVertexLocation (i, 3),emergingArrayVertexLocation (i, 4),eme
rgingArrayVertexLocation(i,5));
end
fclose (output) ;

%output all Emerging Array to a file - with new structure
output=fopen ('crystallayerFile2.txt', 'w');
fprintf (output, '$d \r\n',emergingArrayFacets);
fprintf (output, '%d \r\n', totalCrystals);
insertReturn=1;
for i=(l:size(emergingArrayVertexNewStructure))
if insertReturn==
fprintf (output, '$d \r\n',emergingArrayVertexNewStructure (i));
insertReturn=0;
elseif emergingArrayVertexNewStructure (i)==
fprintf (output, '\r\n') ;
insertReturn=1;
else
fprintf (output, '$d ',emergingArrayVertexNewStructure (i));
end
end
for i=(l:size(emergingArrayVertexLocation))
fprintf (output, '$5.5f \t $5.5f \t %5.5f
\r\n',emergingArrayVertexLocation (i, 3),emergingArrayVertexLocation (i, 4),eme
rgingArrayVertexLocation (i, 5));
end
fclose (output) ;
Soutput all Emerging Array to a file - with new structure
output=fopen ('crystallayerFile3.txt"', 'w');
fprintf (output, '$d \r\n',emergingArrayFacets) ;
fprintf (output, '$d \r\n',totalCrystals);
insertReturn=1;
for i=(l:size(emergingArrayVertexNewStructure))
if insertReturn==1
fprintf (output, '%d \r\n',emergingArrayVertexNewStructure (i));
insertReturn=0;
elseif emergingArrayVertexNewStructure (i)==
fprintf (output, "\r\n'");
insertReturn=1;
else
fprintf (output, '$d ',emergingArrayVertexNewStructure (i));
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end
end

for i=(l:size(emergingArrayVertexLocation))

fprintf (output, '$5.5f \t $5.5f \t %5.5f \t %5.5f \t %5.5f
\r\n', emergingArrayVertexLocation (i, 1), emergingArrayVertexLocation (i, 2),eme
rgingArrayVertexLocation (i, 3),emergingArrayVertexLocation (i, 4),emergingArra
yVertexLocation (i, 5));
end
fclose (output) ;

o

output all FacetMatrix to a file

output=fopen ('planeMatrix.txt', 'w');

for i=(l:size(planeMatrix))

fprintf (output, '$5.5f \t %$5.5f \t %5.5f \t %5.5f \t $5.5f \t %5.5f \t

%$5.5f \t %5.5f \t %$5.5f \t %5.5f \t %5.5f \t %5.5f \t %5.5f \t %$5.5f \t
%$5.5f \t %5.5f \t %5.5f \t %5.5f \t %5.5f \t %5.5f \r\n',
planeMatrix (i, 1:20));

% end

% fclose (output);

o oo

o

%output all lineMatrix to a file
output=fopen ('lineEquationMatrix.txt','w');
outputLineEquation=char (lineEquationMatrix) ;
for i=(l:size (outputLineEquation))
fprintf (output, '$s \t %s \t %s \t %s \r\n',outputLineEquation (i, 1:4));
end
fclose (output) ;

%end doprinting
end

%end moved to here
end

function createHexCrystal (crystallength,crystalRadius,handles,hObject,
eventdata)
%$indent=handles.maxIndent;
indent =
normrnd ( (handles.aveIndent/2), (handles.avelIndent/6)) *crystalLength/100;
crystalType = randi (handles.crystalSeeds);
if crystalType==
crystalType="'standardcolumn';
elseif crystalType==
crystalType='indentsinglecolumn';
else crystalType='indentdoublecolumn';
end
obliqueEnds=0; %randi(1,1,2)+1;

obliqueBasalFacet=0;%randi(1l,1,handles.obliqueBasalFacet);

hexcolumn tetris( crystallLength,

crystalRadius, indent, crystalType,obliqueEnds, obliqueBasalFacet, handles.outp
utFileName );

Assemble Layer (Tetris)
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function
[layer, failed, ParticleNo, particle,overlapCrystalArray]=assemblelLayer Tetris
(length,width, thickness, crystalRadius, layer, trueRadius, seeds)

%[layer, failed, ParticleNo,particle,overlapCrystalArray]=assemblelLayer3 (hand
les.length,handles.width,handles.thickness, seedRadius, layer,crystalRadius) ;

failed=0;
failed due to overlap=1l;

%$What we need to do for Tetris keep moving the particle up until it
no longer overlaps.

%$This is done by increasing the z value of the crystal until it no

%$longer causes an overlap. The upward movement is 1/20th of the

%thickness

%Set random location of particle to be seeded
particle(l,1)=(rand*length+eps); %-(crystalRadius/2));
particle(1,2)=(rand*width+eps); %+ (crystalRadius/2));
$particle (1, 3)=(rand*thickness+eps- (crystalRadius/2));
particle(1,3)=

while failed due to overlap==1 %&& particle(l, 3)<thickness)
failed due to overlap=0
overlapCrystals=zeros (0,0);
overlapCrystalArray=zeros(0,0);
ParticleNo=1;
particle=particle(1,1:3)
if particle(l,3)==
particle (1, 3)=eps
else
particle (1, 3)=particle(1,3)+ (thickness/20)
end
$Determine if the crystal overlaps the edges, if so, spawn another
$crystal shifted over to the opposite side.
if ((particle(l,1)+crystalRadius)>length);
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)-length;
particle (ParticleNo, 2)=particle(1,2);
particle (ParticleNo, 3)=particle (1, 3);
end
if ((particle(l,1)-crystalRadius)<0);
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)+1length;
particle (ParticleNo, 2)=particle(1,2);
particle (ParticleNo, 3)=particle(1l,3);
end
if ((particle(l,2)+crystalRadius)>width);
ParticleNo=ParticleNo+1;
particle (ParticleNo, 1) =particle(1l,1);
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle(1,3);
end
if ((particle(l,2)-crystalRadius)<0);
ParticleNo=ParticleNo+1;
particle (ParticleNo, 1l)=particle(1l,1);
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3);
end
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o\

if ((particle(l,3)+crystalRadius)>thickness);
ParticleNo=ParticleNo+1;
particle (ParticleNo, 1) =particle(1l,1);
particle (ParticleNo, 2)=particle(1,2);
particle (ParticleNo, 3)=particle(l, 3)-thickness;

o° 00 o oe

o\

end
if ((particle(l,3)-crystalRadius)<0);
ParticleNo=ParticleNo+1;
particle (ParticleNo, 1) =particle(1,1);
particle (ParticleNo, 2)=particle(1,2);
particle (ParticleNo, 3)=particle (1, 3)+thickness;

o° 0O d° o oe

o

end
$Where it overlaps two edges, another diagonal particle needs to be
%added

%$length and width
if (((particle(l,1)+crystalRadius)>length) &&
((particle(1l,2)+crystalRadius)>width));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1l)-length;
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle(1l,3);
end
if (((particle(l,1)-crystalRadius)<0) && ((particle(1l,2)-
crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)+length;
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle(1,3);
end
if (((particle(l,1)-crystalRadius)<0) &&
((particle(1l,2)+crystalRadius)>width));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)+length;
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle (1, 3);
end

if (((particle(l,1)+crystalRadius)>length) && ((particle(l,2)-
crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)-length;
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3);
end

%$length and thickness
if (((particle(1l,1)+crystalRadius)>length) &&
(particle (1, 3) +crystalRadius)>thickness));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)-length;
particle (ParticleNo, 2)=particle(1,2);
particle (ParticleNo, 3)=particle (1, 3)-thickness;
end
if (((particle(l,1)-crystalRadius)<0) && ((particle(l,3)-
crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)+1length;
particle (ParticleNo, 2)=particle(1,2);

00 —~ o°

o° 00 o oe

o

o° o

oo
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particle (ParticleNo, 3)=particle (1, 3)+thickness;

o

end

o

oo

if (((particle(l,1)+crystalRadius)>length) && ((particle(l,3)-
crystalRadius)<0));

ParticleNo=ParticleNo+1;

particle (ParticleNo,1l)=particle(1l,1)-length;

particle (ParticleNo, 2)=particle(1,2);

particle (ParticleNo, 3)=particle (1, 3)+thickness;

o° oo o

oo

% end

% if (((particle(l,1)-crystalRadius)<0) &&
((particle(l,3) +crystalRadius) >thickness));

% ParticleNo=ParticleNo+1;

% particle (ParticleNo, 1) =particle(1l,1)+1length;
% particle (ParticleNo, 2)=particle(1,2);

% particle (ParticleNo, 3)=particle (1, 3)-thickness;
% end

% $width and thickness

% if (((particle(1l,2)+crystalRadius)>width) &&
((particle (1, 3)+crystalRadius)>thickness));

% ParticleNo=ParticleNo+1;

oo

particle (ParticleNo, 1) =particle(1,1);
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle(l, 3)-thickness;

o° oo

o\

end

if (((particle(l,2)-crystalRadius)<0) && ((particle(l,3)-
crystalRadius)<0));

ParticleNo=ParticleNo+1;

particle (ParticleNo,1l)=particle(1,1);

particle (ParticleNo, 2)=particle(1l,2)+width;

particle (ParticleNo, 3)=particle (1, 3)+thickness;

o

o° o° o° o°

oo

end

if (((particle(l,2)+crystalRadius)>width) && ((particle(l,3)-
crystalRadius)<0));

ParticleNo=ParticleNo+1;

particle (ParticleNo,1l)=particle(1l,1);

particle (ParticleNo, 2)=particle(1l,2)-width;

particle (ParticleNo, 3)=particle (1, 3)+thickness;

oo

o° oo o

oo

% end

% if (((particle(1l,2)-crystalRadius)<0) &&
((particle(1l,3) +crystalRadius)>thickness));

% ParticleNo=ParticleNo+1;

% particle (ParticleNo, 1) =particle(1,1);

% particle (ParticleNo, 2)=particle(1l,2)+width;

% particle (ParticleNo, 3)=particle (1, 3)-thickness;
% end

% %$length, width and thickness

% if
(((particle(l,1)+crystalRadius) >length) && ( (particle(1,2)+tcrystalRadius)>wid
th) && ((particle(l, 3)+crystalRadius)>thickness));

oo

ParticleNo=ParticleNo+1;
particle (ParticleNo,1)=particle(1l,1l)-1length;
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle(l, 3)-thickness;
end
if (((particle(l,1)-crystalRadius)<0)&& ((particle(l,2)-
crystalRadius)<0) && ((particle(l,3)-crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(l,1)+length;
particle (ParticleNo, 2)=particle(1l,2)+width;

o° 00 o o°

o

o° oo

o\
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particle (ParticleNo, 3)=particle (1, 3)+thickness;

o

end

o

oo

if (((particle(l,1)+crystalRadius)>length) && ((particle(1,2)-
crystalRadius)<0) && ((particle(l,3)+crystalRadius)>thickness));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1)-length;
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3)-thickness;
end
if (((particle(l,1)-crystalRadius)<0) &&
(particle(1l,2) +crystalRadius) >width) && ((particle(l,3)-crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo, 1) =particle(1l,1)+1length;
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle(1l, 3)+thickness;

o° 00 o oe

o

o0 —~ o°

o oo oP

o

end

oo

if
((particle(1l,1)+crystalRadius)>1length) && ((particle (1, 2) +tcrystalRadius)>wid
h) && ((particle(l,3)-crystalRadius)<0));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(1l,1l)-1length;
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle(l, 3)+thickness;
end
if (((particle(l,1)-crystalRadius)<0)&& ((particle(l,2)-
crystalRadius)<0) && ((particle(l,3)+crystalRadius)>thickness));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(l,1)+length;
particle (ParticleNo, 2)=particle(1l,2)+width;
particle (ParticleNo, 3)=particle (1, 3)-thickness;

0 A° o° o° o (t —~ o°

o

o° o° o° o°

oo

end

if (((particle(l,1)+crystalRadius)>length) && ((particle(1,2)-
crystalRadius)<0) && ((particle(l,3)-crystalRadius)<0));
ParticleNo=ParticleNo+1;

particle (ParticleNo,1l)=particle(1l,1)-length;

particle (ParticleNo, 2)=particle(1l,2)+width;

particle (ParticleNo, 3)=particle (1, 3)+thickness;

oo

o° 00 o oe

o

end
if (((particle(l,1)-crystalRadius)<0) &&
(particle(1l,2) +crystalRadius) >width) &&
(particle (1, 3) +tcrystalRadius)>thickness));
ParticleNo=ParticleNo+1;
particle (ParticleNo,1l)=particle(l,1)+length;
particle (ParticleNo, 2)=particle(1l,2)-width;
particle (ParticleNo, 3)=particle (1, 3)-thickness;

o0~ —~ o°

o o° oP

oo

end

%Next check if the crystal(s) overlaps with an existing crystal. If
%$so reject.

$for each particle, if x, y and z locations of the two particles
%overlaps
Sparticle();
if seeds>0
Overlapping=0;
for i=l:ParticleNo
if Overlapping>0
a=particle (i, :);
b=layer(:,1:3);
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%determine the separation of this particle with all
others

%in the layer

separation=bsxfun (@minus, a,b) ;

%$convert this into a two scalar gaps as as crystals
tend to

%$be horizontal

a=separation(:,1)."2;

b=separation (:,2)."2;

c=separation(:,3)."2;

minSeparation=(atb+c) .”.5;

%determine if any of these gaps is less than the sum of
the

$radii

combinedRadii= (bsxfun (@plus,layer(:,4),crystalRadius));

testForGap=minSeparation-combinedRadii;

%get the crystals that overlap, 6th column in the layer

%array

layer;

overlapCrystals=layer ((testForGap<0),6:7);

overlapCrystals(:,3)=1;

overlapCrystalArray=vertcat (overlapCrystalArray,overlapCrystals);

%this pulls out an array of negatives. If there is a
%negative, then there is overlap.
%testForGap=size (testForGap (find(testForGap<0)),1)
for p=l:size(testForGap)

if testForGap (p)<0,0verlapping=0Overlapping+l;end

end
else
failed due to overlap=l
end
end
%1f failed due to overlap==1,break,end

end
end
$1f failed due to overlap==1,failed=1,end
end

Add Crystal to Layer (Tetris)

%$This is a modified version of makelayer2. It takes the accepted crystal,
$rotates it and adds it to the layer as it is being assemblLed. It may have
%$to add multiple crystals as where a crystal crosses a boundary, a second
%crystal is added on the opposite side. As multiple boundaries can be
%crossed, multiple crystals can be seeded.

function

[NewNumberFacets, newlayerData,newlayerDataZ, newlayerVertexData,crystalVerte
xData, lineEquation, planeEquation, boundingSphereNumber, gtyCrystalsSeeded]=ad
dCrystaltolayer4 (particle, length,width, thickness, seeds, overlapCrystalArray)

o°

[NewNumberFacets, newlayerData, newlayerData2, newlayerVertexData,crystalVerte
xData, lineEquation, planeEquation, boundingSphereNumber]=addCrystalToLayer3 (p
article,handles.length,handles.width,handles.thickness, seeds, overlapCrystal

Array,boundingSphereNumber) ;

gtyCrystalsSeeded=0;
boundingSphereNumber=seeds+1;
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newlayerData=zeros;

newlayerData2=zeros;

newlayerVertexData=zeros;

%$this is the basic crystal to be seeded.
crystal=dlmread('seedCrystal.txt"');
%crystal=dlmread ('roundedHexD0O05H01f09f12.dat");

noFacets=crystal(l,1); %first numer in crystal file is number of facets
% each facet will have a number of vericies associated with it. Number of
% verticies for nth facet given in row n+l
noVerticies=crystal (2:noFacets+1,1);
% Each vertex has x,y and z data in 3 colums after the list containing the
% number of verticies per facet
vertexData=crystal (noFacets+2:end,1:3);
%Centre of Gravity for the crystal
spl=0;
sp2=0;
sp3=0;
n=0;
for r=(l:noFacets)
for s=(l:noVerticies(r))

n=n+1;

spl=vertexData(n,l) tspl;

sp2=vertexData(n,2) +sp2;

sp3=vertexData (n, 3) +sp3;

end

end
spl=spl/n;
sp2=sp2/n;
sp3=sp3/n;

%get data on the seeding points for each crystal
%0ld method
$layerfile=dlmread('mica.txt"');
%seedPointData=layerfile(l:end,1:3);
%new method
seedPointData=particle;

$Determine total number of facets

%size (seedPointData,l) is the number of rows, i.e. the number of crystals
in

$the layer

% remove the; to generate the data to the command screen-note that only

% so much will be shown

%0ld method, now added during seeding

o\

NewNumberFacets=size (seedPointData, 1) *noFacets;
j=0;
k=1;
newlayerDataZ2(1l,1l)=noFacets;
for i=(1:NewNumberFacets)

o° oo o

o

% k=k+1;

5 =31

% if j>noFacets

% j=1;

% newlayerData?2 (k,1)=0;
% k=k+1;
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newlayerDataZ2 (k, 1) =noFacets;
k=k+1;
end
newlayerData (i,1)=noVerticies (j);
$for layout2
newlayerData?2 (k, 1) =noVerticies (J);
end
% remove the; to generate the data to the command screen-note that only
% so much will be shown
newlayerDataZ2;

o° A0 o o o° o° J° A o©

o\

%$take the x,y,z coordinates of seed point data and off-set each of the
%points for the crystal file by this amount and place the whole set in the
%$new layer vertex data
for p=(l:size (seedPointData,l))

vertexData=crystal (noFacets+t2:end,1:3); Srefresh vertex data each pass

%it is at this point that we need to adjust the vertex data from its
%original to a rotated crystal before updating the crystal.

%Crystal Rotation

alpha euler=pi*rand*2;

beta euler=acos(1.0-2.0*rand);

gamma_euler=pi*rand*2;

sl=sin
s2=sin
s3=sin
cl=cos
c2=cos
c3=cos

alpha euler);
beta euler);
gamma_euler) ;
alpha euler);
beta euler);
gamma_euler) ;

—~ e~ o~~~ —~

rll=-c2*sl*s3+cl*c3;
rl2=-c2*sl*c3-cl*s3;
rl3=s2*sl;
r2l=c2*cl*s3+sl*c3;
r22=c2*cl*c3-sl*s3;
r23=-s2*cl;
r31=s2*s3;
r32=s2*c3;
r33=c2;
z=0;
for r=(l:noFacets)
for s=(l:noVerticies(r))
z=z+1;
tempVertexData (z,1l)=vertexData(z,1l)-spl;
tempVertexData (z,2)=vertexData(z,2) -sp2;
tempVertexData (z, 3) =vertexData (z, 3) -sp3;
end
end
z=0;
for r=(l:noFacets)
for s=(l:noVerticies(r))
z=z+1;

vertexData (z,1l)=tempVertexData(z,1l) *rll+tempVertexData(z,2) *rl2+tempVertexD
ata(z,3)*rl3;
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vertexData (z,2)=tempVertexData(z,1l) *r2l+tempVertexData (z,2) *r22+tempVertexD
ata(z,3)*r23;

vertexData (z, 3) =tempVertexData (z,1l) *r3l+tempVertexData (z,2) *r32+tempVertexD
ata(z,3)*r33;
svertexData(z, 4)=p;
end
end

end

%$finish buggering about with the crystal file vertex data and apply
%$new crystal data to seedpoints for the crystal and store data

%newlayerVertexData=zeros;

%below needs to be updated so that particles which completely lie
%outside the bounds of the box are completely removed. This means
$writing to a temp array before then adding to the full array...
$1if all points are>max z or<min z reject
%$if all points are>max y or<min y reject
%1f all points are>max x or<min X reject

’

0
1;
0

’

B?‘l—‘

n=0;
NewNumberFacets=0;
%$newlayerData=zeros;
for p=(l:size (seedPointData,l))
maxX=0;
minX=width;
max¥=0;
minY=length;
maxz=0;
minZ=thickness;

for g=(l:size(vertexData,l));
tempVertexData (g, 1:3)=vertexData(q,1:3)+seedPointData(p,1:3);

if maxX<tempVertexData(qg,1)
maxX=tempVertexData (q,1);

end

if minX>tempVertexData (g, 1)
minX=tempVertexData(q, 1) ;

end

if max¥<tempVertexData (g, 2)
maxY=tempVertexData (q,2) ;

end

if minY>tempVertexData (g, 2)
minY=tempVertexData (q,2);

end

if maxZ<tempVertexData (g, 3)
maxZ=tempVertexData (g, 3);

end

if minZ>tempVertexData (g, 3)
minZ=tempVertexData (g, 3) ;

end

end
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%$This bit removes any crystals that lie outside the layer

if (maxX<=0) || ( max¥<=0) || (minX>=length) || (minY>=width) ||
(minZ>=thickness) %|| (maxZ<=0)
$maxX minX maxyY minY
maxz minZz

%maybe not remove this next line as in truth, the seeds
$seeds=seeds-1
else
gtyCrystalsSeeded=qgtyCrystalsSeeded+1;
%adding facets
NewNumberFacets=NewNumberFacets+noFacets;
%adding vertex data
%set below outside the loop

%$3=0;
$k=1;
if k==
newlayerData2 (1, 1)=noFacets;
end
for i=(l:noFacets)
k=k+1;
J=3+1;
m=m+1;
if j>noFacets
j=1;
newlayerData2(k,1)=0;
k=k+1;
newlayerDataZ2 (k,1l)=noFacets;
k=k+1;
end

newlayerData (m, 1) =noVerticies (Jj);
$for layout2
newlayerDataZ2 (k,1l)=noVerticies (j);
end
% remove the; to generate the data to the command screen-note that

only

% so much will be shown

newlayerDataZ2;

for g=(l:size(vertexData,l)):;
newlayerVertexData (((n) * (size (vertexData,l)))+q,1l)=boundingSphereNumber;

newlayerVertexData (((n) * (size (vertexData,l)))+q,2)=p;

newlayerVertexData (((n) * (size (vertexData,1l)))+q,3:5)=vertexData (g, 1:3) +tseed
PointData (p,1:3);

end

n=n+1;

for g=(l:size(vertexData,l));

crystalVertexData(g,1:3,n)=vertexData(qg,1:3)+seedPointData(p,1:3);

end

% remove the; to generate the data to the command screen-note that
only

% so much will be shown
newlayerVertexData;

end

end
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for p=(l:size(seedPointData,l))
for g=(l:size(vertexData,l));
newlayerVertexData ( ((p-
) * (size (vertexData,1l)))+q,1:3)=vertexData (g, 1:3)+seedPointData(p,1:3);
end
end

o° = o o°

o

%$This section generates the crystal layer file. The first line is the
$number of facets, then it is a loop for each facet and then the array of
Svertex data. Currently being stored as crystalfile.txt

output=fopen ('crystalfile.txt', 'w');
fprintf (output, '$d \r\n', NewNumberFacets) ;
for i=(l:size (newlayerData))
fprintf (output, '$d\r\n ', newlayerData (i));
end

for i=(l:size(newlayerVertexData))

fprintf (output, '$d\t %d \t %5.5f \t $5.5f \t %5.5f
\r\n',newlayerVertexData (i, 1), newlayerVertexData (i,2),newlayerVertexData (i,
3:5));
end

fclose (output) ;

%generate data for the facet matrix-this is used to determine overlaps
%between crystals
currentPositionInVertexData=0;
for i=(1:NewNumberFacets)
facet (i, 1)=boundingSphereNumber;
facet (i, 2)=newlayerData (i) ;

o° o° o° o° o°

oo

for j=(l:newlayerData(i))
p=(J-1)*3;
for k=(1:3)

o° oo

o\

facet (i, 2+p+k)=newlayerVertexData (currentPositionInVertexData+j, k) ;
end
end
currentPositionInVertexData=currentPositionInVertexData+j;
end

o° 0o oe

o\

%generate data for the line matrix-again, used for overlaps between
%crystals

currentPositionInVertexData=0;

a=1;

for i=(1l:NewNumberFacets)

o® 0 o o oe

o\

for j=(l:newlayerData(i))
if j==newlayerData (i)
endpoint=currentPositionInVertexData+l;

o

o
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else endpoint=currentPositionInVertexData+j+1;
end
for k=(1:3)

line (g, 1) =boundingSphereNumber;

o° oo oo

o

line (g, k+1l)=newlayerVertexData (currentPositionInVertexData+j, k) ;
% line (g, k+t4)=newlayerVertexData (endpoint, k) ;

% end

% q=q+1;

% end

o\

currentPositionInVertexData=currentPositionInVertexData+j;

o\

end

%$This is new stuff, essentially generating a matrix of the line functions
%and the facet planes rather than calculating these on the fly every time.

%generate data for the plane matrix-this is used to determine overlaps
%between crystals
currentPositionInVertexData=1;
planeEquation=sym([]);
size (overlapCrystalArray);
%1if size(overlapCrystalArray) >0

for i=(1l:NewNumberFacets)

planeEquation (i, 1)=boundingSphereNumber;

planeEquation (i, 2)=newlayerVertexData (currentPositionInVertexData,?2);
%get plane points for the facet from 3 points in the plane
%P1 P2 P3
Pl=newlayerVertexData (currentPositionInVertexData,3:5);
P2=newlayerVertexData (currentPositionInVertexData+l,3:5);
P3=newlayerVertexData (currentPositionInVertexData+2,3:5);

normal=cross (P1-P2, P1-P3);

syms x y z;

P=[x,y,2]);

planefunction=dot (normal, P-P1l);
planeEquation (i, 3)=planefunction;
%$dot (P-P1, normal);

$realdot=@(u, v) u*transpose(v);
$realdot (P-P1,normal) ;

currentPositionInVertexData=currentPositionInVertexDatat+newlayerData (i) ;
end

send

planeEquation;

%generate data for the line Equation matrix-again, used for overlaps

between

%crystals. Maybe replace the above line matrix?

%Despite being only 8 facets to a hex column,this means that there are 36
%lines (6x4 + 8x2), even though some of the lines are effectively the same.

currentPositionInVertexData=0;
a=1;
lineEquation=sym([0,0,0,0]1);
for i=(1:NewNumberFacets)

for j=(l:newlayerData(i))
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if j==newlayerData (i)
endpoint=currentPositionInVertexData+l;
else endpoint=currentPositionInVertexData+j+1;

end

P4=newlayerVertexData (currentPositionInVertexData+j,3:5);
PS5=newlayerVertexData (endpoint, 3:5);

syms t;

line2=P4+t* (P5-P4);

line2(1,1);

line2(1,2);

line2(1,3):;

lineEquation(qg,3:5)=1ine2(1,1:3);
lineEquation (g, 1) =boundingSphereNumber;

lineEquation (g, 2)=newlayerVertexData (currentPositionInVertexData+j,2);
q=q+1;
end
currentPositionInVertexData=currentPositionInVertexData+j;
end

%$save crystal.mat
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