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Abstract
Inmany application domains, conventional e-noses are frequently outperformed in both speed and
accuracy by their biological counterparts. Exploring potential bio-inspired improvements, we note a
number of neuronal networkmodels have demonstrated some success in classifying static datasets by
abstracting the insect olfactory system.However, these designs remain largely unproven in practical
settings, where sensor data is real-time, continuous, potentially noisy, lacks a precise onset signal and
accurate classification requires the inclusion of temporal aspects into the feature set. This investigation
therefore seeks to inform and develop the potential and suitability of biomimetic classifiers for use
with typical real-world sensor data. Taking a generic classifier design inspired by the inhibition and
competition in the insect antennal lobe, we apply it to identifying 20 individual chemical odours from
the timeseries of responses ofmetal oxide sensors.We show that four out of twelve available sensors
and thefirst 30 s (10%) of the sensors’ continuous response are sufficient to deliver 92% accurate
classificationwithout access to an odour onset signal. In contrast to previous approaches, once
training is complete, sensor signals can be fed continuously into the classifier without requiring
discretization.We conclude that for continuous data theremay be a conceptual advantage in using
spiking networks, in particular where time is an essential component of computation. Classification
was achieved in real time using aGPU-accelerated spiking neural network simulator developed in our
group.

1. Introduction

1.1. Background
Chemosensing electronic nose (‘e-nose’) technology
has great potential for applications in everyday life,
ranging from drug detection to food quality assess-
ment [1] and even diagnosis of illness [2, 3]. A typical
e-nose device might employ doped tin oxide sensors
that generate time series of resistance values that
change selectively in the presence of certain chemicals.
Typically, pre-processing and encoding methods are
applied to convert the collected time series into
discrete numerical representations of each odour that
are amenable to separation by classical classifier
algorithms such as k-means clustering or support
vector machines (SVMs) [4]. However, e-nose devices
have had limited success in some applications because
odour detection and classification comprise a highly

challenging domain characterised by high dimension-
ality, unknown organisation of the vast ‘odour space’
of all volatile chemicals and complex dynamics of
odour plumes [5]. To compound these difficulties,
current sensor technology continues to exhibit distinct
shortcomings in speed, sensitivity, selectivity, recov-
ery, and drift avoidance [3]. As a result, e-nose devices
remain substantially outperformed in both speed and
accuracy by biological noses, both mammalian and
insect. This is particularly true in realistic field settings
outside the controlled environment of the laboratory.
Whilst development of novel bio-based sensors has
begun to showpromise [6–8]we focus here on another
challenge, the classification of continuous incoming
olfactory data, leveraging the intrinsic temporal nature
of spiking network approaches. In the work presented
here, we use a benchmark data set of 20 chemicals
measured by 12 metal oxide e-nose sensors [4] to
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investigate an odour classifier employing a spiking
network design abstracted from the insect olfactory
system.

1.2. The insect olfactory system
Olfactory regions in the insect CNS (figure 1(a)) follow
a common organisation, comprising three distinct
stages of sensing, transformation and association
(classifying) [9]. At the sensing stage, neural activity
(spiking) is triggered in olfactory receptor neurons
(ORNs) located along the antennae. Each ORN
expresses one type of olfactory receptor (OR) protein
which binds a different and specific range of ligands
that may appear in a variety of airborne chemicals
[5, 9, 10]. The net effect is that each odour will trigger a
fast, widespread spiking response across the set of
ORNs, with varying intensity in each ORN type,
depending on the odour’s chemical constituents. It is
likely that this distribution of response profiles has
been tuned through evolution to best aid discrimina-
tion between odours.

The transformation stage takes place in the anten-
nal lobe (AL) structure where axons from the ORNs
synapse onto a limited set (e.g. 43 in Drosophila) of
spatially distinct sites of high synaptic interaction
called glomeruli [11, 12]. ORNs that express the same
type of receptor [9] provide excitatory input to sub-
populations of projection neurons (PNs) and local
interneurons (LNs) within a given glomerulus. PNs
generate the output from the AL to higher brain

centres. LNs, in contrast, inhibit PNs in other glomer-
uli in the AL, shaping patterns of glomerular activation
as they compete.Whilst the exact coding scheme enac-
ted by this competition remains contentious [13–15] it
is evident that the broadly tuned ORN responses are
modulated by this lateral inhibition to generate a spar-
ser and more granular encoding intended to enable
separation of even closely related odours.

Activity from the AL is projected to higher brain
centres like the mushroom body (MB) and the lateral
horn, where classification and multisensory integra-
tion take place [16]. Here, the activation patterns of the
glomeruli are ultimately associatedwith an output that
is relevant (useful) to the insect, for example the pre-
sence of a foodstuff.

1.3. Bio-inspired and biomimetic spiking neural
classifiers
Anumber of neuronal network classifiers based on the
insect olfactory system have been developed and have
demonstrated some success in classifying static data-
sets comprising either standard benchmark sets
[14, 17] or artificial data [18]. However, these models
remain largely unproven in a practical setting where
input sensor data is real-time, continuous, potentially
noisy, lacks a precise onset signal and accurate
classification requires the inclusion of temporal
aspects into the feature set. This investigation seeks to
inform and develop the potential and suitability of

Figure 1. (a) Schematic of the insect antennal lobe (AL). Olfactory receptor neurons (ORN) in the antennae innervate ‘glomeruli’
clusters of projection neurons (PN) in the AL. Local inhibitory neurons (LN) trigger competition between glomeruli (two illustrated)
causing odour-modulated activation patterns of spiking to be passed to themushroombody (MB) for association. (b)Conceptual bio-
inspired classifier design abstracted from the insect olfactory system. Virtual receptors (VRs) distributed across input space simulate
the wide-field response of the olfactory receptors (see text). Higher regions abstracted as association neuron clusters representing the
classes present in the dataset. (c)Classifiermodel implemented as three populations of neurons on aGPUbased spiking simulation.
Clustering is implemented using appropriate connectivitymatrices to demarcate divisions within a population. The action of LN
neurons is abstracted out as inhibitory connections between clusters.Weight plasticity is actioned on theworkstation.
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biomimetic classifiers for use with typical real-world
e-nose sensor data.

2.Model design

We base our spiking neuronal network model design
on the approach of Schmuker et al [14] which offers a
straightforward and re-useable abstraction of some
key features, in particular of the AL, whilst having a
demonstrated ability to classify several standard data-
sets. Although not claiming a high degree of bioreal-
ism, our model (figure 1(b)) comprises the same three
stages described above for the insect CNS: sensing,
transformation and association.

The general aim behind this design is to provide a
generic spiking network model for multivariate pat-
tern classification. Since the model operates in the fir-
ing rate domain, it can only deal with non-negative,
bounded input variables. The first challenge in the
model design therefore is to transform, in a generic
way, real-valued data into non-negative, bounded
representation. This is achieved in the ‘sensing’ stage
using ‘virtual receptors’ (VRs), in analogy to ORs in
insects. These VRs operate like a radial-basis function
encoding of the multivariate data set. The ‘receptive
field’ of a VR is defined by an exponentially decaying
function (see methods). In order to eliminate ‘gaps’ in
data space that are not covered by any VR, we chose
these receptive fields to be verywide.

The centroids of the VR receptive fields are placed
in data space by unsupervised learning with a self-
organising process (a neural gas [19]). This is necessary
to ensure that the VR centroids are located in proxi-
mity to the data they should encode, which is particu-
larly important when dealing with high-dimensional
data. Note that due to the purely unsupervised nature
of this process, no class information of the data is used
in this stage. This process mimics the evolution of
insect odorant receptors over time, since they evolve to
cover the wide space of odorants that are relevant for
the organism’s survival.

A subpopulation (‘cluster’) of receptor neurons
(RNs) is assigned to each VR, which respond collec-
tively to a given input by producing a net spiking rate
modulated by the proximity of the receptor point to
the input. The net result is an abstraction of the insect
OR/ORN architecture, namely a limited number of
overlapping wide-field receptors with response pro-
files distributed over the high-dimensional input
space.

For the transformation stage of our model, each
RN cluster is set to excite a corresponding PN cluster
—a ‘glomerulus’. Mutual inhibition in a soft winner-
take-all (WTA) configuration is then added between
these glomeruli. This acts to suppress excitation
invoked by more distant VRs, focusing activity onto
the closest VRs, whilst emphasising their response dif-
ferences. The result is a glomerular (i.e. PN cluster)

level activation pattern that is amenable to an associa-
tive learning rule.

The final association stage of the model heavily
abstracts the role of the insect MB and higher brain
areas. One cluster of association neurons (AN) is
assigned to represent each output class in the data set
—the identity of the 20 test chemicals in our case.
Spiking activity in these clusters will indicate the classi-
fier’s decision, by means of the total spike count over a
defined period. Dense plastic connectivity is added
between the PN and AN layers and a simple reinforce-
ment-style learning rule is applied while the training
dataset is presented. The ‘reward’ for a correct classifi-
cation decision comprises the strengthening of synap-
ses linking spiking PN neurons to correctly spiking
ANs, whilst conversely, ‘punishment’ for an incorrect
decision weakens synapses between involved active
PNs and ANs. The result is an association between
activation of particular glomeruli and the activation of
a corresponding output class cluster. Finally, to create
a clear final ‘decision’ in the AN layer, a WTA inhibi-
tion is applied between the AN clusters.

Figure 1(c) illustrates our implementation of the
conceptual model in a fast GPU-based, based spiking
model simulator. Note that complete details of the
model and learning implementation are provided in
themethods andmaterials section.

3. E-nose recordings

For training and test data we used recordings of the
responses to 20 chemical compounds of a combina-
tion of six classical doped tin oxide and six novel
chromium titanium oxide (five zeolite-coated) sen-
sors, obtained under laboratory conditions using a
FOX e-nose [4]. The tested compounds were taken
from four chemical groups: alcohols, aldehydes, esters
and ketones, with five chemicals per group. Each
compound was prepared and recorded ten times as
previously described [4] (figure 2(a)). The task we set
the neural classifier was the identification of the 20
individual compounds based on the (300 s, 2 Hz)
timeseries response of up to 12 sensors at once.
Furthermore, given the impractical slowness of the full
5 min response curve, a secondary goal was to
investigate the potential to bring the decision point
significantly forward in time without a large cost in
accuracy.

3.1. Encoding for classification
Previous classifying work with this data set [4] has
shown that downsampling the data but retaining
temporal features in the encoding process produces
compact representations of the data that allow success-
ful recognition of odours by a linear SVM classifier.
This approach also out-performed a range of non-
temporal encodings [4]. For example, creating a single
16-dimensional vector representation by sampling a
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response at only four time points on just 4 sensors
(figure 2(b)) was sufficient to classify the dataset to
more than 99% accuracy using the SVM. Further-
more, restricting the sample times to the early stages of
response—for example the first 30 s out of 300 s total
—caused very little reduction in performance [4].
Based on these results, we chose a similar encoding
approach to create a static multivariate representation
as input to our own bio-inspired neural model,
namely, four sensors, sampled at four time points
fromodour onset (figure 2(b)).

We generated our set of VR points to represent the
16-dimensional input space by using a self-organising
‘neural gas’ process [19] against the complete training
dataset. Note that this is unsupervised, i.e. makes no
use of class labelling. A representative example of the
mapping results is provided infigure 3(a).

3.2. Classifying continuous datawithout onset
timing
One of the practical problems introduced by this
timed-sample encoding strategy is that, in the field, an
e-nose device will rarely have access to accurate odour
onset timing. The requirement for acquiring precisely

timed temporal features fromdata that is continuously
varyingwithout timing cues therefore appears particu-
larly problematic.

However, by adding delay lines to the input, it
becomes possible to access time-shifted versions of the
input signal which correspond to the required inter-
vals between the chosen sample points (figure 2(c)).
When the input signals are read the delayed signals are
also accessed from the delay line, generating a com-
pound input vector comprising both current and past
samples (figure 2(c)). If the employed delays used are
the same, then at some point in time, as the sensors’
response unfolds, this compound vector will repro-
duce the same timed sample set used to train the
classifier.

This approach is not, we suggest, a purely engi-
neering convenience that diverges from the bio-
inspired basis, as a conceptually similar approach to
capturing temporal features has also been proposed to
form part of the insect strategy for odour classification
[20]. For example, the axonal ‘delay-line’ effect intro-
duced by the spaced layout of the receptor array in the
AchetaDomesticus cricket has been shown tomodulate
the neural coding of odours [20]. Although these

Figure 2. (a)Representative example of timeseries response of 12metal oxide sensorsmounted in a Fox e-nose upon controlled
laboratory exposure to one of 20 chemical classes (see text for details). The y-axis indicates the absolute value of the change in the
relative resistance of the sensor,Δr/r0 where r0 is the baseline resistance. (b)Defining a 16 point (dotmarkers) temporal signature of
one response to a chemical exposure using four samples (at 9, 16, 23, 30 s) on a subset of four selected sensors. (c)Using a delay line to
provide three delayed versions (dashed traces) of the live input (solid trace) allows all 16 data points to be captured in each timestep
(four per sensor). This approach is used to enable classification using continuous sensor input with no onset signal. Thefigure
illustrates this principle acting on one sensor to capture four samples.
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delays are clearly far shorter than the sample intervals
employed here, it should be noted that the sensor
response of insects are orders of magnitude faster than
ourmetal oxide sensors andwould indeed require very
fast sampling to implement temporal feature
encoding.

Although this delay-line strategy can address the
sample timing issue with continuous data, there is also
the problem of knowing when to appropriately begin
and end evaluation of spiking activity at the output.
This scenario can clearly occur in a detector or alarm
deployment where sensors are left open indefinitely,
awaiting the presence of a target odour. To address
this, we tested a simple spiking activity-based algo-
rithm, which identifies sufficiently active periods and
demarcates appropriate evaluation time windows over
which a comparative spike count can be made

(figure 4). This allows the classifier to functionwithout
any use or knowledge of a global or recording-based
time variable.

4. Results

4.1. Classifier training
The classifier was trained and tested using a stratified
ten-fold cross validation strategy. On each of ten runs,
one (different) member of every class is allocated to
the test set. The remaining 180 observations (record-
ings) are randomly drawn for presentation from each
class in turn, with random class ordering per run.

The response to the temporal signature (static
representation) of the selected recording is applied as
input to the Poisson ‘receptor’ neurons and, with

Figure 3. (a)The distribution of a training set of 180 e-nose recordings after encoding each as a single 16-dimensional vector, plotted
using the two principal components of the set.Matchingmarkers imply recordings of the same class. Red crosses denote the locations
of 43 virtual receptor (VR) points selected by the self-organising process. The red and green circles show the loci of the receptive field
around aVR at 0.5 and 0.2 attenuation. (b)The response function (0,1] of theVR receptors with distance (adjusted for the two-
dimensions).

Figure 4.Generating an odour onset time-independent evaluationwindow for classification. The avg. spiking rates of the output class
clusters are tracked.When themost active cluster crosses a trigger rate thresholdσT (red dot) an evaluationwindow (grey shaded
region) is generated from time t1 to t2, the timeswhere the spike rate crossed the valueσT/k (blue dots), denoting afixed fraction of the
trigger rate. In the presented results kwas set at 2withσT=80 Hz. This dual level approach addresses the issues of (i) too narrow a
window ifσT is set too high or (ii) premature triggering ifσT is set too low.
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plasticity enabled, the spiking network simulation is
run for a (simulated) 500 ms using an integration
timestep of 0.5 ms.

Exposure to the training set is repeated a fixed N
times until performance on the training set has con-
verged, without straying into overfitting (performance
on test set drops). The value ofNwas set during initial
investigations—see figure 6(d).

4.2. Performancewithout awidefield receptor
correlate
Without using a correlate of the widefield receptor
response, the AL model acting directly on a stratified
20 class dataset (encoded as RN spiking activity driven
by the normalised response per sensor) was able to
classify a test dataset to an average 39% (s.d. 2.7%)
across ten-fold cross-validation. This suggests that the
classifier is functional but that the dataset comprises a
non-trivial classification problem that the relatively
simple strategy enacted by the AL structure alone does
not solve easily.

4.3. Performance usingVRs as awidefield receptor
correlate
The input was switched to the proximity response to a
set of VR points in input space generated indepen-
dently from each training dataset in the cross valida-
tion. All further results were elucidated employing this
two stagemodel.

4.4. Inhibition, competition and learning
Figures 5(a) and (b) provides a representative example
of the spiking activity and cluster interaction of the
classifier when presented for 500 ms with the static
encoding of an unseen sample of isopentylacetate
(odour class 13), after training is completed. The
pattern of spiking activity in the RN clusters demon-
strates how an input elicits a wide ranging response
encompassing a large proportion of the VR receptors.
The 2D projection of the response (figure 5(c)) illus-
trates how the response is proportional to the proxi-
mity to the input. The activity in the PN clusters
demonstrates the action of the inter-cluster mutual
inhibition to reduce the activity to the closest VRs
whilst emphasising the difference between these.
Finally, the AN cluster activity illustrates how the
correct class cluster has been associated, via the
appropriate strengthening of PN–AN connections
during training, with the VRs responding most to
samples from this class. The lack of activity in rival AN
class clusters also reflects the effect of the WTA
inhibition in this layer.

4.5. Classifier test scenarios
After training, the classifier performance was tested in
three scenarios of increasing difficulty. Firstly, plasti-
city is disabled and, as with the training, the static
representations of the test set recordings are simply

applied to the classifier in turn for 500 ms. The
classifier’s winner decision for each recording is
awarded to the AN class cluster with the maximum
spike count over the 500 ms presentation. This simpler
scenario was used primarily for parameter tuning and
to characterise the classifier performance.

In the second scenario, performance is tested by
replaying the continuous timeseries recording data
from the e-nose. The sensors’ response was originally
captured at 2 Hz (i.e. 500 ms between samples) total-
ling 600 samples over a 300 s recording. The recording
is played into a software delay line to generate three
additional delayed versions at 7 s intervals. From these
four inputs sampled together the VR response is
obtained and applied to the spiking network input for
500 ms. The winner is awarded to the most active class
cluster over thewhole 300 s presentation.

Finally, performance is tested by adhering to a
more realistic ‘detector’ scenario where there are no
preset discrete periods to evaluate over and a positive
odour detection (i.e. classifying decision taken) is deci-
ded solely on the basis of sufficient activity in the net-
work taking place.

To achieve this, the current average spiking rate of
each cluster is calculated on-the-fly and an algorithm
is applied to trigger the start and end of an appropriate
‘evaluation window’ in the time domain (figure 4).
The winner is evaluated from the most active class
cluster within this window.

4.6. Characterising performance
Figure 6 characterises the performance of the classifier
in the initial testing scenario. Three important config-
uration settings are explored which impact the
resource and processing load required by the classifier.
Firstly, the number of VRs employed (figure 6(a))
affects the resolution of the input space mapping but
each one adds two extra neuron clusters and associated
synapses to the model. Results suggest that, for this
data set distribution and self-organising algorithm
combination, little performance is gained beyond
45VRs.

Secondly, the use of probability-based rate coding
of the input means that the cluster size (figure 7(b))
affects the reliability and consistency of the mutual
inhibition behaviour that is an important part of the
classifier strategy. This comes about through issues
such as synchrony artifacts caused by the resolution of
the integration timestep (see [14] for a detailed discus-
sion). Results suggest that 30 Poisson neurons is a
minimum cluster size and that 50–60 neurons can
improve performance further by a few percentage (90
up to 94.55%).

Thirdly, it is clearly advantageous in many situa-
tions for an e-nose device to make an identification as
soon as possible. Whilst the sensor recordings show
that their response does not settle for at least 2 min
after onset, results suggest (figure 6(c)) that taking four
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samples in the period from 10 to 30 s is sufficient for a
strong classification performance and relatively little
improvement is available by widening this time
window.

Finally, performance can be improved by re-
exposing the training set a number of times as the
association can continue to be refined by the learning
rule. However,more repetitions slow the learning pro-
cess and more importantly, risk over-fitting to the
training data over the test data. Results suggest
(figure 6(d)) that little performance is gained beyond
three repetitions, and that over-fitting sets in at six
repeats.

Overall, we conclude that, drawing upon only the
first 30 s of this 200 observation, 20-class data set, the
described classifier can perform creditably whilst still
lagging a SVM (we achieved 94.55% avg. accuracy,
10×10-fold stratified cross-validation, against 99%
for SVM) when using 43 VRs, a cluster size of 60 neu-
rons and four exposures to the training data.

Considering the question of why our classifier is
outperformed by an SVM approach, we examine the
specifics of the error cases. We find that 50% of errors
are accounted for by the three most common class
pairs that are confused when using 30, 43, or 50 VRs
(Z2-hexen-1-ol and furfaral, acetone and
2-heptanone, pentanol and hexanal). These can all be
shown to involve overlapping or closely positioned

clusters in input space (see the figure 4(a) PCA plot for
a visualisation).

4.7. Classifying continuous recordings
Figure 7 provides a representative example illustrating
the spiking activity in the network when presented
with the first 40 s of a 300 s previously unseen
continuous timeseries recording of the sensors’
responses. As discussed in the methods, the network
response is elicited after training has been completed
using 500 ms presentations of the static downsampled
encodings of the training set, using four samples of
four sensors taken at 9, 16, 23 and 30 s after odour
onset, (i.e. with a 7 s inter-sample interval).

Following training, an unseen continuous record-
ing is tested as input, using a delay line to recreate the
sample intervals used in training, and the 4×4 result
is played as input into the classifier network. From
figure 7 it can be clearly observed that the response of
the network builds to a peak at the 30 s mark before
dying away. This peak corresponds, as expected, to the
point where the four input copies should align to the
last of the four sample times (30 s) used as the input
space for the distribution of VRs and where training of
VR-to-class association has taken place. In particular,
it can be noted from the heatmap (figure 7(b)) the
intensity of response in the AN layer indicating a
dominant class cluster. If the ‘winning’ class is inferred
from the AN cluster spike counts over the full available

Figure 5. Spiking and cluster interaction in the networkwhen presentedwith an unseen sample of isopentylacetate (Class 13) after
training is completed. (a)Raster plot showing the spiking behaviour across the RN, PN andAN layers when sample is presented for
500 ms. The banding shows spiking activity within clusters of 60 neurons. TheRN and PN clusters correlate withVR activity before
and aftermutual inhibition. TheANclusters correspond to the odour class selected by the classifier. The spiking indicatedwith arrows
are artifacts resulting from the preceding recording presentation (the network is not reset, input VR response data is simply replaced
between timesteps with the new set before simulation continues). (b)Bar graph comparing the spikes countedwithin each cluster
during the sample presentation. (c) ‘Heatmap’ of response in 2D space. The coloured squares indicate the cluster spiking activity in PN
(above) andRN(below) illustrating theVR response with distance from the input (green cross)when projected into two-dimensional
space via PCA. Seefigure 3 for the full 2D projectionmap of input data andVRpoints.
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300 s presentation, this results in a 92% (std.dev.
0.68% across 10×10-fold cross-validation assay)
accurate classification of the test set.

Disallowing use of these discrete 300 swindows for
spike counting make for a more realistic scenario
without onset information. In this scenario, windows
of high activity from the network are used to infer that
a valid classification is being made. The red square in
figure 7(b) indicates the evaluation window chosen by
the algorithm described in figure 4 and demonstrates
the identification of a zone of interest without use of
absolute time or onset information. If the ‘winning’
class is now inferred by the AN cluster spike counts
within these evaluation windows, this results in the
same 92% classification of the test set (std.dev. 0.56%
across 10×10-fold cross-validation assay). This
result compares favourably with 94.55% achieved
using static encoding of the test set, which requires
precise onset timing as a pre-requisite.

4.8. Generalisation of classifier design
A final test to validate any classifier and discount
effects of inadvertent overfitting due tomultiple re-use
of data when developing themodel is to expose it to an
entirely unseen data set and to report the results with
no further parameter modifications beyond retraining

with the new training data set [21]. Applying the
classifier to a separate but directly comparable data set,
which was produced one year later using the same
procedures resulted in 92.65% (0.74% std.dev.,
10×10-fold crossvalidation) accuracy for static
encoding and 89% (0.61% std.dev., 10×10-fold
crossvalidation) when continuous input was supplied
and the evaluation window was applied. The small but
significant drop in the mean performance (confirmed
by t-test) suggests that, within bounds of expectation,
the classifier generalises well to unseen data.

5.Discussion and conclusion

We used a combination of the bio-inspired concept of
wide-field VRs and a spiking network model inspired
by the architecture of the insect olfactory system to
determine the presence and identity of odorants from
e-nose recordings. The classifier design comprising 43
VRs (matching the number of chemical receptor types
inDrosophila) and a 6000 spiking neuron, bio-inspired
abstracted model of competition and inhibition in the
insect AL can deliver 92% accurate classification of 20
different chemicals employing only 30 s of e-nose
sensors’ continuous responses and without access to

Figure 6.Performance of classifier under a range of configurations. For all graphs, performance is shown as the correctly classified
percentage of the test set (20 observations) of a ten-fold stratified cross-validation. The error bars show the standard deviation across
the ten repeats. The orange dashed line shows a reference performance achievedwith a support vectormachine (see [4]) using the
same four sensor—four sample encoding scheme (sample times 20, 40, 80, 100 s). (a)Performance change as number of VRsmapping
input space increases (cluster size 60, samplewindow 30 s). (b)Performance variation as the number of neurons per cluster is
increased (43VRs, samplewindow 30 s). (c)Performance change as the time interval between four sample points is increased. The
first sample is taken at 10 s and the last (4th) is taken at the time shown on the x-axis (43VRs, cluster size 60). (d)Performance
improvement when the classifier is re-exposed to the training set a 2nd, 3rd,.., nth time.
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an odour onset signal. The observed performance is
based on both bio-inspired pre-processing and the
spiking neural network classifier. When we used the
spiking neural network directly on normalised e-nose
measurements, performance dropped to 39%. But it
has also been shown previously, that VR filtering
paired with a minimal classifier (naïve Bayes) per-
formed less well than with our spiking classifier [14].
In the implementation presented here, VR positions
are still calculated ‘offline’, using conventional com-
puting to map out the data space. Whilst this arguably
provides a correlate of the evolution of static biological
receptor responses, an e-nose based deployment using
a complete neuromorphic-based implementation

would require a spiking network that is also able to
learn prototypes in multivariate data. A candidate for
this task which is compatible with existing neuro-
morphic hardware, has been presented by Nessler and
colleagues [22]. We will investigate the use of such a
design in forthcomingwork.

When using a non-continuous static encoding of
the data, the network achieves a creditable classifica-
tion performance on this dataset of 94.55% (SVM
99%, see [4]). However, performance aside, for con-
tinuous data there is a conceptual advantage in using a
spiking network: time is an essential component of
computation in spiking networks. Hence, dealing with
continuous timeseries data, such as sensor readings, is

Figure 7.With training completed on static encodings, thefigure shows thefirst 40 s of spiking activity in the networkwhen the delay
line input is presented in real timewith an unseen example of the original 300 s continuous timeseries recording of the sensors’
responses, sampled at 2 Hz. (a)Raster plot showing the spiking behaviour across the RN, PN andAN layers. The banding shows
spiking activity within clusters of 60 neurons. The RNand PN clusters correlate withVR activity before and aftermutual inhibition.
TheAN clusters correspond to the odour class selected by the classifier. The green band highlights the regionwhere the four sample
times used to encode the recording (and subsequently used for training)will align. (b)Heatmap showing the same spiking data as (a)
using colour to conveymore accurately the relative intensity of cluster spikingwithin each 500 ms sample presentation. The red
square indicates the evaluationwindow chosen by an algorithm (see figure 4) to identify a zonewherein an odour response is detected
and classificationmade. (c)–(f) Four further representative heatmap examples focusing on the important 30 smark (grey vertical line).
These showhow the evaluationwindow (red square) is shifted and stretched by the algorithm to identify a region acrosswhich the
correct class should be themost active, even under conditionswhere themost active cluster is varying over time in both the ANand
PN layers. Note that (d) illustrates one example where the algorithm is incorrect.
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natural. In contrast to our previous approaches [4, 14],
once training is complete, the sensor signals can now
be fed continuously into the classifier, with no dis-
cretisation required, thus removing one element of
abstraction (the specific time of signal onset) between
the data and the classification. Therefore, while in this
case the network’s performance on discretised, static
encodings did not surpass what could be obtained
with an SVM, this implementation is an important
step towards real-time processing of continuous sen-
sor data with spiking networks.

The demonstrated ability to classify based on early
response curve data is important because, although
metal oxide sensor speed is improving [23], it still lags
insect ORN response by at least two orders of magni-
tude. This difference becomes most apparent in field
settings where the spreading of odour plumes from
diverse sources will result in rapidly altering con-
centration pockets reaching a sensor array [24].Whilst
bio-based sensors are now on the horizon [6–8], the
cost and availability of conventional sensors confers a
clear advantage.

The success of a parallel GPU-based implementa-
tion of this classifier is significant as it offers the poten-
tial of a simple and scalable route to tackle real time
and continuous engineering problems with a neuro-
morphic engineering approach. Affordable GPU
power continues to rise rapidly, with platforms avail-
able from supercomputer clusters tomobile.

However, our approach remains to be tested
against more realistic continuous odour data, i.e. che-
mical mixtures, varied concentrations, masking by
uninteresting background odours, intermittent and
intermingled odour plumes. These cases are particu-
larly relevant when considering the problems encoun-
tered by potential mobile and embedded applications
of e-nose systems [25]. Although some interesting
results have been achieved with binary mixtures using
a similar bio-inspired model [15], it has also been sug-
gested that the components of an odour mixture ema-
nating from separate sources are easier to disentangle
when analysing odour space in continuous time,
instead of averaging over large temporal windows [24].
In this domain, the fact that time is intrinsic to this
classifier could bear real benefits in performance.

6.Methods andmaterials

6.1. Implementation
Data here refers to the GPU-based implementation
(figure 1(c)) of the conceptual classifier model
(figure 1(b)).

We use clusters of 60 neurons throughout to
ensure consistent averaged spike rate coding and to
minimise potential synchrony effects occurring in
inter-cluster competition [14]. Using 40 VRs, this
implies 6000 neurons and some 6 million active

synapses. To achieve real time classification at this
scale a GPU-accelerated neural simulator (GeNN,
[26, 27]) was chosen, using CUDA C to run at 8 times
real-time on a standard NVidia card (GeForce GTX
760–1152 cores). Classifier code is implemented in C
++ running on a high end Linux workstation (8-core,
3.7 Ghz Xeon, 32GB RAM) with the g++ compiler.
Both model and classifier are available as examples in
theGeNN repository [26].

6.2. Input encoding details
E-nose recordings comprise 300 s, 12-sensor time-
series data at 2 Hz sampling. Recordings are zeroed
when the chemical is released. A basic smoothing filter
is applied using a simple moving average. Timeseries
data is then reduced to a static representation compris-
ing a single 16-dimensional vector constructed from
four sensors, sampled at four points. Sample time and
sensor choice were informed by previous classification
work on this data set [4], resulting in a choice of two
doped tin oxide sensors and two novel chromium
titanium oxide with sample times set at 9, 16, 23, 30 s
(see figure 2(b)).

With each recording in the training set now repre-
sented by a point in 16-dimensional input space, a set
of VR points is selected to representatively span this
space, generated for each cross validation dataset using
the ‘neural gas’ algorithm [19].

6.3. VR response
A proximity response rÎ (0,1] is elicited from each VR
according to its distance d in data space to the current
input point. The response r is made unit free by scaling
with the average distance davg between all input points
in the set. The wide distribution of relatively tight class
clusters in data space (figure 4(a)) means that using a
linear response function (see [14]) performs poorly on
this data set. An exponential decay function is
employed instead. The parameters k andm are used to
widen the response field whilst emphasising the
nearest VR (figure 3(b)). The rate for the ith VR is
given by

r
kd

d
exp , 1i

i
m

avg

( )
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟= -

where d is calculated as the ‘Manhattan’ distance
between points, i.e. the sum of the absolute coordinate
differences. The response curve is shown in
figure 3(b), for k=5,m=0.7.

6.4. Spikingmodel details
We model an abstracted insect olfactory system in
GeNN [26] as three main ‘layers’: RNs, PNs and ANs
as shown in figure 1(c). Sub-population ‘clusters’
represent VR activation (RN), glomeruli (PN) and
recognised classes (AN).
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The RN input neurons implement Poisson rate
coding, producing spike trains with an average spike
rate that tracks the current response level of their
assigned VR. The required average spike rate ρ is set
as:-

r , 2max min min( ) ( )r r r r= - +

where r is the (0,1] response of the associated VR and
ρmax=70 Hz, ρmin=5 Hz are the maximum and
minimum spike rates.

PN and AN layers are implemented as ‘map’ neu-
rons [28]. This model employs a phenomenological,
discrete time dynamical map with a fixed timestepΔt
set at 0.5 ms. These can be computedmuch faster than
conductance models (HH) enabling modelling of up
to 105 neurons in real time.

Synapses are considered to have zero axonal trans-
mission delay and the synaptic current Isyn at time t
flowing from a presynaptic to a postsynaptic neuron is
defined as:-

I t g S t V V t , 3syn syn rev post( ) ( )( ( )) ( )= -

where gsyn is the synapse conductance set via the
connectivity matrix and is potentially updateable
through plasticity. S(t) represents the amount of

neurotransmitter available at the postsynaptic neuron.
Each presynaptic spike delivers a fixed amount which
is decreased exponentially on each timestep. Vpost(t)
represents themembrane potential of the postsynaptic
neuron at time t whilst Vrev denotes the synapse
reversal potential (Vrev fixed to 0 mV for excitatory,
−92 mV inhibitory).

6.5.Model topology details
Topology comprises RN–PN connectivity, PN–PN,
PN–AN and AN–AN (see figure 1). Note that all
connectivity is inter-cluster, there are no internal
connections between neurons of a single cluster. Fed
by a VR, each RN cluster excites its corresponding PN
cluster (a notional ‘glomerulus’) using a common
fixedweight with 50% random connectivity.

Competition between glomeruli is implemented
by PN–PN inhibitory synapses. PN neurons connect
only to those in other glomeruli (random 50% con-
nectivity) using a fixed weight chosen to damp activity
outside of themost active clusters.

Associating VR activation with output classes is
controlled by the PN–AN synapse population, set at
50% random connectivity. Weights are initialised and
modified in training according to the plasticity rule
(see next section).

The final synapse population, AN–AN acts to pro-
vide a single clear ‘winning’ class cluster in the ANout-
put layer. A WTA configuration is constructed by

lateral inhibition between neuron clusters represent-
ing each class. In contrast to lateral inhibition between
PNs in different glomeruli the inhibitory weight is set
higher in the WTA to eliminate activity outside the
winning cluster.

6.6. Plasticity and learning rule
Before training runs all PN–AN synapses are initialised
randomly between minimum and maximum weights,
wmax and wmin. Simple reinforcement style learning is
applied to strengthen PN–AN connections that lead to
correct classifications and weaken those producing
incorrect classifications. To this end, after each record-
ing presentation, weights are adjusted up or down
according to spikes in the ‘winning’ AN class cluster.
For the set Swin comprising every AN neuron that
spiked in that cluster, all incoming synapse connec-
tions fromPNare considered and its weight is adjusted
by a fixed amount ±Δw, (w bounded to wmin, max).
The sign of the adjustment follows whether the
classification decision was correct or not. Thus the
weight wij from the ith PN neuron to the jth AN
neuron is adjusted as:-
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