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Computational neuroscience has uncovered a number of compu-
tational principles used by nervous systems. At the same time,
neuromorphic hardware has matured to a state where fast silicon
implementations of complex neural networks have become feasible.
En route to future technical applications of neuromorphic comput-
ing the current challenge lies in the identification and implementa-
tion of functional brain algorithms. Taking inspiration from the
olfactory system of insects, we constructed a spiking neural network
for the classification of multivariate data, a common problem in
signal and data analysis. In this model, real-valued multivariate data
are converted into spike trains using “virtual receptors” (VRs). Their
output is processed by lateral inhibition and drives a winner-take-all
circuit that supports supervised learning. VRs are conveniently
implemented in software, whereas the lateral inhibition and clas-
sification stages run on accelerated neuromorphic hardware. When
trained and tested on real-world datasets, we find that the classifi-
cation performance is on par with a naive Bayes classifier. An anal-
ysis of the network dynamics shows that stable decisions in output
neuron populations are reached within less than 100 ms of biolog-
ical time, matching the time-to-decision reported for the insect ner-
vous system. Through leveraging a population code, the network
tolerates the variability of neuronal transfer functions and trial-to-
trial variation that is inevitably present on the hardware system.
Our work provides a proof of principle for the successful imple-
mentation of a functional spiking neural network on a configurable
neuromorphic hardware system that can readily be applied to real-
world computing problems.

bioinspired computing | spiking networks | machine learning |
multivariate classification

he remarkable sensory and behavioral capabilities of all

higher organisms are provided by the network of neurons in
their nervous systems. The computing principles of the brain
have inspired many powerful algorithms for data processing,
most importantly the perceptron and, building on top of that,
multilayer artificial neural networks, which are being applied
with great success to various data analysis problems (1). Al-
though these networks operate with continuous values, compu-
tation in biological neuronal networks relies on the exchange of
action potentials, or “spikes.”

Simulating networks of spiking neurons with software tools is
computationally intensive, imposing limits to the duration of
simulations and maximum network size. To overcome this limi-
tation, several groups around the world have started to develop
hardware realizations of spiking neuron models and neuronal
networks (2-10) for studying the behavior of biological networks
(11). The approach of the Spikey hardware system used in the
present study is to enable high-throughput network simulations
by speeding up computation by a factor of 10* compared with
biological real time (12, 13). It has been developed as a recon-
figurable multineuron computing substrate supporting a wide
range of network topologies (14).

In addition to providing faster tools for neurosimulation, high-
throughput spiking network computation in hardware offers
the possibility of using spiking networks to solve real-world
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computational problems. The massive parallelism is a potential
advantage over conventional computing when processing large
amounts of data in parallel. However, conventional algorithms
are often difficult to implement using spiking networks for
which many neuromorphic hardware substrates are designed.
Novel algorithms have to be designed that embrace the inherent
parallelism of a brain-like computing architecture.

A common problem in data analysis is classification of mul-
tivariate data. Many problems in artificial intelligence relate to
classification in some way or the other, such as object recognition
or decision making. It is the basis for data mining and, as such,
has widespread applications in industry. We interact with clas-
sification systems in many aspects of daily life, for example in the
form of Web shop recommendations, driver assistance systems,
or when sending a letter with a handwritten address that is
deciphered automatically in the post office.

In this work, we present a neuromorphic network for super-
vised classification of multivariate data. We implemented the
spiking network part on a neuromorphic hardware system. Using
a range of datasets, we demonstrate how the classifier network
supports nonlinear separation through encoding by virtual recep-
tors, whereas lateral inhibition transforms the input data into a
sparser encoding that is better suited for learning.

Results

We first outline our spiking neural network design and show
examples of the network activity during operation in supervised
classification of multivariate data. Then we analyze the temporal
dynamics of the classification process and compare the network
classification performance against the performance of a naive
Bayes (NB) classifier. We show that the network tolerates the
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neuronal variability that is present on the hardware through
leveraging a population code. Finally, we demonstrate that
the network design is generic and can be applied, without
reparameterization, to different multivariate problems. We used
the PyNN software package for network implementations on the
Spikey neuromorphic hardware system (15, 16). For simplicity, all
temporal parameters are specified in the biological time domain
throughout this study. The actual time values referring to the
spiking network execution on the hardware are 10* times smaller
due to the speedup factor of the accelerated Spikey system.

A Spiking Network for Supervised Learning of Data Classification. In
multivariate classification problems, data are typically organized
as observations of a number of variables arranged in a matrix X,
with rows corresponding to observations and columns to real-
valued features. Each observation has an associated class label
stored in a binary matrix Y, with Y;; = 1 if the observation i
belongs to class j. The aim is to find a mapping A such that
argmax(X-A) =Y, with argmax returning 1 for the maximal value
in each row and 0 otherwise. The classes of new observations X’
can then be predicted by applying the transformation argmax
(X’-A) =Y'. The architecture of the insect olfactory system maps
well on this task (17-19).

We designed a classifier network that approximates the basic
blueprint of the insect olfactory system, without claiming to be an
exact model of the biological reality. Its three-stage architecture
consists of an input layer, a decorrelation layer, and an association
layer (Fig. 14). We provide a detailed description in SI Materials
and Methods and a parameter list in Table S1.

In the input layer, real-valued multidimensional data are
transformed into bounded and positive firing rates. The data
enter the network via ensembles of receptor neurons (RNs). RNs
fire spikes at specified rates which are computed from the real-
valued input data using “virtual receptors” (VRs) (17) (see also
SI Materials and Methods, VRs for details). A VR corresponds to
the center of a linear (cone-shaped) radial basis function in fea-
ture space. The magnitude of its response to a data point (a
“stimulus”) depends on the distance between the VR and the
stimulus. Hence, the VR response is large for small distances
between stimulus and receptor, and vice versa. VRs are placed in
data space in a self-organized manner using the neural gas algo-
rithm (20).

RN ensembles project onto projection neurons (PNs) in the
decorrelation layer, which are grouped in ensembles that rep-
resent the so-called glomeruli in the insect antennal lobe. Each RN
ensemble targets one glomerulus, which thus receives excitatory
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Fig. 1. Network architecture and real-world classification problem. (A)
Schematic of the generic network. AN, association neuron; LN, local in-
hibitory neuron; PN, projection neuron; RN, receptor neuron. (B) Projection
of the complete iris dataset to the first two principal components (97.7%
variance explained) and locations of 10 VRs. Annotations refer to data points
presented in Fig. 2.
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input that represents the activation of one VR. The PNs project to
local inhibitory neurons (LNs), which laterally inhibit other glo-
meruli. Moderate lateral inhibition between glomeruli reduces
correlations between the variables they represent without degrading
the encoding to a fully orthogonalized representation (14, 21-23).

The output of the decorrelation layer is projected to the as-
sociation layer, in which supervised learning for data classifica-
tion is realized. Association neurons (ANs) are grouped in as
many populations as there are classes in the dataset. Each
population in the association layer is assigned one label from the
dataset (for example, “choice A” and “choice B” as indicated in
Fig. 14). The AN populations project onto associated pop-
ulations of inhibitory neurons. The strong inhibition between AN
populations induces a soft winner-take-all (sSWTA) behavior
in the association layer. The synaptic weights from PNs to ANs
are initialized randomly. An activity pattern presented to the
network will thus by chance deliver more input to one of the
“choice” populations than to the others, resulting in higher firing
rate of that population (the “winner population”). If the label of
the winner population matches the one of the stimulus, the
network performed a correct classification. We used a 50%
connection probability from RNs to PNs, from PNs to LNs and
to ANs, and from excitatory to inhibitory neurons in the sSWTA
circuit (Table S1). Inhibitory populations are fully connected to
excitatory populations.

We train the network in a supervised fashion by presenting
stimuli with known class labels. If classification was correct, ac-
tive synapses from PNs to the winner population are potentiated.
If classification was incorrect, active synapses are depressed (see
Materials and Methods for a detailed description of the algo-
rithm). This learning rule is derived from the delta rule for
perceptron training (24, 25). Network training leads to an opti-
mized set of synaptic weights for classification of the dataset.
After successful training, the winner population in the associa-
tion layer indicates which class a stimulus belongs to, and it can
predict the class adherence for unseen stimuli.

Application of the Neuromorphic Classifier Network to a Real-World
Dataset. We implemented the classifier network on the Spikey
hardware system, which has been described in detail previously
(14). We assessed its performance using Fisher’s iris dataset (26)
as a benchmark. The iris dataset is a four-dimensional dataset
describing features of the blossom leaves for three species of the
iris flower, Iris setosa, Iris virginica, and Iris versicolor. This dataset
is particularly well suited for this study for two reasons. First, it
contains only 150 data points, which makes rapid prototyping of
the network feasible. Second, the constellation of the data points
allows for a fine-grained interpretation of the classifier capa-
bilities: The I setosa class is well separated from the other two,
making learning the classification boundary easy (Fig. 1B). Sepa-
ration of the I virginica and I versicolor classes is more difficult
because they partly overlap in feature space. Classifier perfor-
mance on this separation indicates how well the classifier copes
with more challenging problems. Separating such overlapping
data classes typically requires supervised learning methods,
because there is no clear “gap” between the classes in data space
that would allow an unsupervised method to detect class
boundaries.

We used 10 VRs to encode the dataset. They represented the
data points by firing intensities, which were used to generate the
RN spike trains in the input layer using a gamma point process.
The number of VRs determines the number of glomeruli, and
thus the total number of neurons required for the network. The
specific choice of 10 VRs was a compromise between choosing a
number as high as possible while staying within the maximal neu-
ron count of 192 on the present neuromorphic hardware system
(see SI Results, Number of Glomeruli for a detailed explanation).

The spiking activity of the classifier network is depicted in Fig.
2. Fig. 24 shows the activity of all neurons in all three layers in
the beginning of the training phase when stimulated with the data
point annotated as “2A” in Fig. 1B. The activity pattern across the

Schmuker et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1303053111/-/DCSupplemental/pnas.201303053SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1303053111/-/DCSupplemental/pnas.201303053SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1303053111/-/DCSupplemental/pnas.201303053SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1303053111/-/DCSupplemental/pnas.201303053SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1303053111/-/DCSupplemental/pnas.201303053SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1303053111/-/DCSupplemental/pnas.201303053SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1303053111

L T

\

BN AS PN AN D

A before training B after training C
238 s = : s it 1.0
” T g Lo bR R LB LR ML £
Zr Frigl! . e e
< ERRLE | § P R 0.0
190} setosa S 2R £ L
H ’ <‘
w
3 D 10
* fe
5130} 0.0
=1 wn
2 Z.
F ‘
E 10
60 . E
9 0.0 :
& | z i
o qw
0.

0.0 0.2 0.4 0.6 0.8

time [s] spikes/s

1.00 50100 0.0 k 0.4
time [s]

0.4 0.6
time [s]

0.6 0.8 1.00 50100

spikes/s

Fig. 2. Network activity during stimulus presentation before and after training. (4) Untrained network. Spike raster display and population spike count of all
neuron populations in the network in response to the presentation of one data point from /. versicolor as indicated in Fig. 1B. Distinct neuronal populations
are labeled by alternating color saturation. Warm/cool color, excitatory/inhibitory population. The stimulus was applied at time t = 0 s for the duration of 1s.
(B) Network activity after training during 1 s of stimulation with a test sample from /. versicolor as labeled in Fig. 1B. (C-E) Spiking activity and temporal
evolution of F(t) (Eq. 1) for all three excitatory AN populations in response to three different data samples as labeled in Fig. 1B. Color of F(t) trace indicates
the Iris species associated to the respective AN population (color code as in Fig. 1B). Only spiking activity from excitatory ANs is shown.

RN population expresses the activation level of the VRs. PNs
exhibited sparser activity compared with RN, largely due to lat-
eral inhibition from LNs. All three populations of ANs responded
with approximately the same intensity because the weights from
decorrelation layer to the association layer are initially random.
Due to the strong lateral inhibition in the association layer, all
three populations showed synchronized and oscillating activity.
The population associated to the I. setosa class emitted a slightly
higher number of spikes than the others during the 1-s stimulus
presentation. Because the presented data point belonged to the 1.
versicolor class, this association was wrong, and hence the weights
of synapses targeting the I. setosa population were reduced after
this presentation as part of the training procedure. During the
training phase, 80% of all data points were presented and the
weights adjusted according to the learning rule after each pre-
sentation. Fig. 2B shows network activity in response to a sample
from the I. versicolor class in the test phase. The AN population
activity rapidly converged to a representation that indicated the
correct association after only a few spikes and maintained this
state throughout the duration of the stimulus presentation.

To assess the convergence of the association layer activity to
a winner population, we calculated the cumulative fraction of
spikes F.(t) from each population c at time ¢ as follows:

Fe(t)= 1]

where I.(¢) indicates the number of spikes emitted by population
¢ within the interval (0,], whereas I,;(¢) refers to the total num-
ber of spikes from all AN populations. F,(¢) thus reflects, at each
time point ¢, the integrated activity of one AN population com-
pared with the total AN activity up to that point in time. Fig. 2C
shows the resulting population dynamics for the example in Fig.
2B, together with spike trains in the AN populations. For this
data point, it took about 150-200 ms before the network activity
converged toward a stable state with the 1. versicolor population
having the highest activity, indicating the correct association.
This convergence happened faster for data samples from the
well-separated I. sefosa class (Fig. 2D). In a third example from
the L versicolor class close to the class boundary, the network first
showed a slightly higher firing rate for the correct class, but
eventually converged to a wrong decision (Fig. 2F).

Time to Decision and Classification Performance. We used Gorodkin’s

K-category correlation coefficient Rx to measure classification
performance (27) (see SI Materials and Methods, Evaluation of
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Classifier Performance for a formal definition and rationale be-
hind our preference of Rx over more frequently used performance
measures like “percent correct”).

In our network, each data class is represented by a different
AN population. For each presentation of a test stimulus, the
population that generated the most spikes within a certain ob-
servation time window is the winner population, indicating either
a correct or incorrect classification. We computed the Rk across
all test samples in a time-resolved manner by varying the time ¢
after stimulus onset that was used to count AN spikes. As shown
in Fig. 34, Ry rapidly approaches a stable maximum indicating
a time-to-decision of less than 100 ms in biological time corre-
sponding to 10 ps of real time with the Spikey chip.

We next compared the absolute classification performance
with that of the NB classifier, which we use here as a benchmark
for conventional machine learning methods. We chose NB because
it is a linear classifier without any free parameters, so it delivers
robust classification without the need for parameter tuning. We
evaluated Rk across the entire 1-s stimulus presentation. For the
iris dataset, the NB classifier yields an average Rx of 0.89 (P>’ =
0.88, P*° = 0.90) in 50 repetitions of fivefold cross-validation and
thus slightly outperforms the neuromorphic classifier with Rx = 0.87
(P* =0.85, P** = 0.89, 50 repetitions) (Fig. 3B). The performance
evaluation is described in detail in ST Materials and Methods.

For a thorough examination of the classification outcome, we
compared the confusion matrix produced by the classifier net-
work (Table S2 and SI Results, Per-Class Classification Performance).
The classifier only produced errors on the more challenging sepa-
ration of I. versicolor and . virginica, whereas it always succeeded to

42ms 76ms
A 10-\ 7/ B 1.0
0.8 0.8
0.6 0.6
R R
K 0.4 K 0.4
0.2 0.2
0.0 0.0
L L 1 1 1 ] NE  hw
0 200 400 600 800 1000

time [ms]

Fig. 3. Classification performance. (A) R obtained for decision time points
between 0 and 1,000 ms from a single cross-validation run. The vertical
dotted lines indicate when Ry first exceeds values of 0.7 (42 ms) and 0.8 (76
ms). (B) Classification performance of the hardware classifier network (hw)
at decision time of 1 s compared with a naive Bayes classifier (NB) in fivefold
cross-validation. Error bars indicate 20th/80th percentile from 10 repetitions.
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separate I. setosa. This observation indicates that the classifier
network is capable of delivering reliable classification not only
of well-separable data, but also in cases where samples from
different classes overlap in feature space.

Tolerance Against Neuronal Variability. The analog circuits used to
represent neurons in the Spikey system exhibit inherent vari-
ability that the classifier network must tolerate to be useful in
practice. Two sources of variability on the hardware system can
be distinguished: “temporal noise” and “fixed-pattern noise.”
Temporal noise (including thermal noise and other sources of
stochastic variability) affects the circuits on short timescales in an
unpredictable fashion. In contrast, fixed-pattern noise is caused
by device mismatch. Device mismatch describes the deviance of
an electronic component from its specification due to inevitable
variations in the manufacturing process. The variations of neu-
ron parameters due to device mismatch occur on much slower
timescales and can be regarded as constant for our use case.
They introduce heterogeneity across all analog components—
neurons and synapses—according to a fixed pattern (hence the
term “fixed-pattern noise”). The individual variation can be
measured and calibrated for. The integrated development envi-
ronment of the Spikey system contains calibration methods that
reduce the amount of fixed-pattern variability. However, such
generic calibration methods cannot account for all network
configurations in an efficient manner, because calibration at the
neuron level does not take into account network effects. This is
particularly relevant for the Spikey system, which was designed to
accommodate a wide variety of network topologies (14). In our
case, the fixed-pattern variation that remains after built-in cali-
bration manifests itself in variability of the neurons’ transfer
functions that relate input rate to output rate. Both maximal
output rate and slope of the transfer functions varied consider-
ably across PNs and LNs (Fig. 44).

Due to its stochastic nature, temporal noise cannot be avoided
by systematic measures such as calibration of synaptic weights.
We quantified the variation in spike count caused by temporal
noise by measuring the variability of the spike count in all 192
hardware neurons across 50 repetitions with identical stimuli.
For this purpose, we generated input spike trains only once and
used them repeatedly as input to all 192 neurons (“frozen in-
put”). We used six gamma processes of order five and mean rate
of 25 spikes/s to mimic the inputs that PNs receive in the clas-
sifier network. We adjusted the weights of the neurons to yield
a mean output frequency of 25.4 spikes/s. The neurons exhibited
moderate trial-to-trial variability under these conditions. Fig. 4B
shows the distribution of spike counts for one exemplary neuron
that produced 25.3 spikes on average, with a variance of 1.0. This

PNs

>

# trials
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22 25 28

Firing rate
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# neurons
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RN firing rate -30-15 0 15 30
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Fig. 4. Neuromorphic hardware variability. (A) Variability of transfer
functions across all PNs and LNs on the hardware chip. Each line corresponds
to one neuron. (B) Hardware trial-to-trial variability: Histogram of spike
counts for one example neuron across 50 repeated stimulations with iden-
tical “frozen input” of 1-s duration (average spike count, 25.3; variance, 1.0).
(C) Histogram of per-neuron spike counts relative to the individual aver-
age spike count emitted by each of the 192 neurons across 50 repeated
identical 1-s stimulations. The vertical lines indicate 20th/80th percentile
(P*° =3.99, P%° = 4.58).
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amount of variability is also reflected when considering the total
population (Fig. 4C). On average, the individual spike trains
from the same neuron varied with a Fano factor (28) of 0.083,
which is smaller than the variability inherent to the gamma
process used for the generation of the RN spike trains (y = 5,
Fano factor = 0.2). Thus, the trial-to-trial variability due to
temporal noise intrinsic to the neuromorphic hardware is small
compared with those variations imposed by the biologically re-
alistic stochastic generation of input spike trains.

The classifier network achieved the reported performance
despite transfer function variability caused by fixed-pattern noise
and trial-to-trial variability caused by temporal noise and by the
stochasticity of the input. This robustness is the result of con-
siderable efforts to optimize network topology. Essentially, the
key to achieve robustness in our network was to leverage pop-
ulation coding. Two network properties proved essential to en-
sure a valid population code. First, synchronization of neurons
within a population should be avoided because it violates the rate
code assumption of independent neurons within each pop-
ulation. We achieved this by sparsifying the input to individual
neurons, i.e., using 50% connection probability instead of full
connectivity. Second, population sizes must be sufficiently large
to reduce the variance of the population transfer function. We
provide a detailed explanation of how these properties affect
network operation in SI Results (Figs. S1 and S2, and SI Results,
Network Optimization for Robustness Against Neuronal Variability).

General Applicability to Other Datasets. As a demonstration for the
ability of the network to solve nonlinear problems, we applied
the network to classification of a 2D “Ring” dataset. This simple
dataset consists of two classes, one class situated in a cluster
centered at the origin and a second class surrounding it (Fig. 54).
It has skewed class proportions with sevenfold more data points
in the surround than in the center class. In addition, the ar-
rangement of data points requires a nonlinear separation be-
tween the center and surround classes. Our network achieves this
separation through the VR trick: By using 10 VRs to represent
a 2D dataset, we transform the data into a higher-dimensional
space in which linear separation is possible. The classifier net-
work running on the Spikey system achieved an average perfor-
mance of Rx = 0.96 on the Ring dataset (NB: Rx = 0.98; Fig.
5C, Left).

The Mixed National Institute of Standards and Technology
(MNIST) database is a commonly used high-dimensional bench-
mark problem with practical relevance (http://yann.lecun.com/
exdb/mnist/). The database contains images of handwritten digits
from 0 to 9, digitized to 28 x 28 pixels. Hence, each observation
has 28-28 = 768 dimensions. The dataset is divided into a training
and a test set to enable reproducible benchmarking. We picked
a subset of this dataset consisting of the digits “5” and “7,” using
2,000 samples from the training set and 1,920 samples from the
test set (Fig. 5B). On the MNIST dataset, the spiking network
outperformed the NB classifier by a large margin (hardware
network: mean Rx = 0.94; NB: 0.82; Fig. 5C, Right). Interestingly,
when training the NB classifier on the spike counts produced by
PNs in the network (that is, after the lateral inhibition stage in
the decorrelation layer), its performance increases to similar
levels as obtained with the classifier network (mean Rx = 0.96).
This observation is in line with a previous study which demon-
strated that lateral inhibition increases classifier performance on
a 184-dimensional odor dataset (17).

The reason for this effect lies in the fact that lateral inhibition
transforms the broad, overlapping receptive fields of VRs (and
in consequence RNs) into more localized representations of
input space. In other words, receptive fields of PNs are narrower
than those of VRs, and they overlap to a lesser degree. As a re-
sult, PN activity is also sparser than VR activity, that is, only few
PN populations respond to a particular stimulus. This behavior
can be observed, for example, when comparing the spike counts
of RNs and PNs in Fig. 2 4 and B. Sparser activity and more
local receptive fields simplify the training process, because it

Schmuker et al.
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Fig. 5. Application to generic classification problems. (A) Ring dataset
(training samples) and locations of 10 VRs. (B) First two principal components
of MNIST digits “5" (893 samples) and “7" (1,107 samples) from the training
set (2,000 samples total) and VR locations. (C) Performance comparison of
the naive Bayes classifier (NB) vs. the classifier network on hardware (hw),
and the NB classifier trained on PN firing rates (NB/PN). Error bars indicate
20th/80th percentile from 10 repetitions. When trained on the VR responses,
the NB performance is deterministic for these datasets because the training
and test datasets are fixed. For NB/PN, we extracted the PN firing rates from
the 10 repeated network runs that we used to assess the spiking network.
Hence, the NB classification performance varies.

becomes easier to identify the input units that are relevant to
discriminate data points in a particular region of input space (the
“credit assignment problem”). We explain the soft partitioning
effect provided by lateral inhibition in detail in SI Results, Effect
of Lateral Inhibition on Classification Performance, including an
illustrated example (Fig. S3).

Speed Considerations. The major advantage in using accelerated
neuromorphic hardware for spiking neuronal simulations is its
potentially fast execution time. On the neuromorphic hardware
system used in this study, simulations run with a speedup factor
of 10*. Hence, presenting all 150 iris data points for 1 s (bio-
logical time) each to the hardware network takes 150 s/10* = 15
ms pure network run time. Practical applications require data
transfer for spikes and synaptic weights to and from the system as
well as the parameterization of the hardware network, which
adds to the pure network run time (for details, see SI Materials
and Methods and Fig. S4). These factors depend on the efficiency
of the software interface for the hardware system. Because we
are working with a prototype setup, its interface is under con-
stant development and improvement. At the time of writing, the
hardware system effectively achieved an overall 13-fold speedup
compared with biological real time. We want to stress that this
number may improve as the software interface is continuously
optimized.

Discussion

We demonstrated the implementation of a spiking neuronal
network for classification of multidimensional data on a neuro-
morphic hardware system. The network is capable of separating
data in a nonlinear fashion through encoding by VRs. The
transformation by lateral inhibition increases classification per-
formance. It performed robustly in the presence of stochastic
trial-to-trial variability inherent to the hardware system. The
network is not restricted to any specific kind of data, but is ca-
pable of classifying arbitrary real-valued, multidimensional data,
and hence universally suited for all kinds of classification tasks. It
achieved performance values comparable to a standard machine
learning classifier, which points out the network’s wide applica-
bility to real-world problems. The present network implementa-
tion is a proof of concept that can serve as a building block for
classifier tasks on neuromorphic hardware. Together with the
high speedup factor of the neuromorphic hardware system, our
universal classification network is an important step toward high-
performance neurocomputing.

We verified the capability of our implementation of VRs to
transform data into a higher-dimensional space in which linear
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separation is possible. The network we presented contains a lin-
ear classifier, with the additional constraint that the separating
hyperplane must pass through the origin (29). As such, it is limited
to separating linear problems. We overcame this limitation
through the VR approach, which provides a higher-dimensional
representation of the data. Our results on the MNIST dataset
point out that the lateral inhibition step is crucial for successful
classification of real-world, high-dimensional datasets. Although
more complex machine learning algorithms like support vector
machines or restricted Boltzmann machines may allow for better
classification performance directly on the VR data, the strength
of our approach lies in the simplicity of a linear classifier com-
bined with appropriate filtering of input data through the lateral
inhibition step, which is very efficiently carried out in a massively
parallel neuromorphic hardware network.

Lateral inhibition provides a soft partitioning of input space
that facilitates classifier training. Note that this circumstance also
points out a limitation of the presented classifier network, because
class boundaries in data space can only be optimally represented if
they coincide with partition borders. A straightforward way to deal
with this problem is to increase the number of VRs and glomeruli,
resulting in a more fine-grained partitioning of data space. Such
an approach will be possible using emerging large-scale neuro-
morphic hardware systems supporting tens of thousands of
neurons (8, 30).

VRs depend on a self-organizing process that is trained in data
space. A particularly interesting prospect is to implement this
process on the neuronal substrate. Spiking self-organizing maps
have been described in the literature (31-33), suggesting that, in
principle, it is possible to implement a self-organizing process on
a neuromorphic hardware system. However, the learning rules
used in these studies would require sophisticated control logic,
which makes it difficult to implement them on the Spikey system.
A more straightforward and mathematically well-founded ap-
proach has recently been put forward by Nessler et al. (34). They
suggested a probabilistic, self-organizing mechanism to learn
prototypes in feature space using spike timing-dependent plas-
ticity (STDP) and a winner-take-all circuit, which is suited to
represent the VR encoding. An integrated implementation of
this encoding together with the classifier network we present
here will likely require a much higher neuron count and more
flexible plasticity mechanisms compared with what is available on
the Spikey system (13). On-chip implementations may become
feasible considering the BrainScaleS wafer-scale hardware system
that extends the number of available neurons by up to several
orders of magnitude and provides more sophisticated plasticity
mechanisms (35, 36). In that system, multiple identical neuro-
morphic modules may be implemented on a single silicon wafer
and communicate through high-bandwidth connections. Moreover,
advanced control logic for on-chip implementation of elaborate
STDP rules is under development (36), which is designed to be
compatible with the self-organized prototype learning mecha-
nisms described by Nessler et al. (34). In addition, the deter-
ministic connectivity structure of the glomerular classifier network
presented here facilitates splitting the network across different
neuromorphic modules. The increased neuron count available in
a large-scale system would allow for a larger number of VRs to
solve more complex problems and enables scaling the network to
larger population sizes to support robustness against noise.

Analysis of the dynamic network activation in response to the
onset of a stimulus presentation revealed a fast decision time
where the average performance reached its maximum within less
than 100 ms in biological time (Fig. 34). This is in good agree-
ment with recent measurements in insects. In the honeybee,
a prominent animal model for studying learning and memory, it
was shown that the encoding of the identity of an olfactory
stimulus at the level of PNs evolved rapidly within tens of mil-
liseconds (37, 38). Neuronal populations at the output of the
mushroom body encode odor-reward associations. These neu-
ronal populations fulfill a similar function like the ANs in our
network. In a classical conditioning paradigm, they indicated the
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classification of the conditioned stimulus (an odor that was pre-
viously paired with a sugar reward) within less than 200 ms (39).

Our network proved to be robust against neuronal variability,
which is an important factor in the design of neuromorphic
algorithms. Biological neuronal networks face a similar challenge.
The study of neuronal variance is an integral part of today’s neu-
roscience ever since the seminal study by Mainen and Sejnowski
(40). Many neural properties are stochastic in nature, like neu-
rotransmitter release or spike initiation, so a certain amount of
variability is inevitable in biological neuronal networks (41). In
the same vein, the analog nature of the circuits in the hardware
enables the massive speedup and integration density, but un-
avoidably entails variability. In our case, we achieved tolerance
against variability by using a population code. Generally, accel-
erated analog neurocomputing requires models that can cope with
and, ideally, make use of variability. The design of these models
will benefit greatly from a deep understanding of biological circuits,
interpreted in the light of variability. Likewise, creating functional
networks on an analog neuromorphic substrate provides insight
into critical properties that networks must possess to operate
under noisy conditions.

Materials and Methods

Stimuli were presented to the classifier network in a sequential manner. For
each stimulus /, the corresponding feature vector x; was obtained from the
observation matrix X, converted into a firing-rate presentation with VRs,
from which spike trains were generated by a gamma point process (42). Each
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stimulus was presented for 1 s of biological time. Synaptic weights that
fulfilled a Hebbian eligibility constraint were updated after each stimulus
presentation. A synaptic weight was eligible for updating if the target neuron
was a member of the winner population, and if the spike count emitted by the
presynaptic neuron during the previous stimulus presentation exceeded
a threshold (fixed to 35 spikes in the 1-s stimulus interval). Eligible synapses
were potentiated by a fixed amount if classification was correct, or depressed
by a fixed amount if classification was incorrect. A formal description of the
training algorithm is available in S/ Materials and Methods, Network Training
and Supervised Learning Rule.

Network training was implemented in an interactive chip-in-the-loop
fashion: Stimuli were processed by the network on the chip. After each
stimulus, the network response was evaluated on the host computer where
the weight changes are calculated. The network was then reconfigured and
the next stimulus presented.
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