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Abstract 

Stratified flow in an environmental chamber has been investigated. The chamber of 

dimensions (7.5m long, 5.6m wide and 3.0m) at the University of Hertfordshire has 

been used. Sets of experiments investigating the effect of the major flow parameters 

such as airflow rate, jet momentum, flow conditions and height of the air supply device 

have been conducted. Results have been obtained to evaluate the flow characteristics 

and thermal stratification mechanism. The study has demonstrated the validity of using 

smoke visualization to evaluate the stratified flow characteristics such as interface level 

height, stratified layer thickness, and degree of stratification. The effects of both hot and 

cold airflow rates in the ranges of (0.0 to 8.0 m3 fmin) were investigated. The flow 

characteristics vary depending on the flow parameters and the experimental conditions. 

The effect of supply terminal and extract terminal at various airflow rates on the flow 

characteristics is experimentally investigated. It has been found that relative influence of 

inertia and buoyancy forces resolves the stratified flow characteristics. The stratification 

interface level height and the ventilation flow rates are two main factors in the design of 

natural ventilation system. The results can be used to obtain a good estimation of the 

effectiveness of a ventilation system at design stage. 

Experimental work was carried out using ceiling jet to supply hot and cold air to a 

confined space, to investigate the effect of jet momentum in breaking and mixing the 

stratified layer. The flow of high momentum was supplied downward from the ceiling. 

The magnitude of momentum needed depends on the degree of stratification, stratified 

layer interface level height and the stratification conditions. It can be seen that the jet 

momentum has significant influence on the mixing of the stratified flow characteristics. 

The results indicated that once the momentum was initiated a mixed flow grew in the 

occupied zone above the floor. The height of this zone depends on the stratified flow 

characteristics, and the temperature and momentum of the ceiling jet. 

Another area of experimentation was the inversion of input airflow supplies. In this 

case, the flow of high buoyancy was supplied upward, whilst the flow of high 
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momentum was supplied downward from the ceiling. The stratified layer lost its 

stability and broke down due to the drag and tearing of cold air penetrated downward 

from higher levels. The compound effect of these two conditions will circulate the air in 

the whole space and disturb the stability of the stratified layer to reach fully mixed flow 

A comprehensive definition of the degree of stratification was fonnulated. Analytical 

solutions were developed for the stratified layer thickness and location as a function of 

temperature gradient and airflow ratios. These expressions were calibrated using the 

experimental results. The critical momentum needed to breakdown the stratified layer 

also evaluated. Comparisons with previous studies where also carried out. 

It was found that the stratified layer interface level height is dependent on the ratio of 

airflow rate and geometrical effects. If mixed flow is desired then the cold inflow 

aperture should be located higher than the hot inflow aperture, whiles the interface level 

height is not located at the exhaust aperture height. 

The critical vertical momentum necessary in order to break down a stratified layer has 

been found to depend on the stratified layer interface level height. A semi-empirical 

fonnula based on the present experimental results has been developed to predict the 

critical vertical momentum for given stratified conditions. 

Based on the present experimental results, the effect of momentum is greater than the 

effect of buoyancy and the time needed to break down the stratified layer is 

considerable less than the time it takes to stratify. 

Experimental data also demonstrate a ventilation method for increasing the occupied 

zone height without breaking down the stratified layer. 
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Chapter 1 

Introduction 

1.1 Introduction 

In general, ventilation is the method used to remove the heat and contaminants in 

buildings and workplaces, by delivering air of high quality and right quantity to the 

ventilated space. Rapid dilution for removal of contaminants from the workplace in a 

safe and reliable manner is the aim of good ventilation. It is the process of providing 

fresh air to the building occupants, rather than the building itself, in order to sustain a 

healthy air quality with minimum capital cost and environmental impact, [Awbi 

(1998)]. 

A large percentage of our time is spent indoors, and the work performance is negatively 

affected by unsuitable indoor temperatures and by indoor pollution [Wargocki et al. 

(1998)]. Furthermore, the greatest component of energy consumption, in modem 

bUildings, is probably for ventilation, and it is usually in the range of 30-60% of the 

building energy consumption, [Awbi (1998)]. The environment should be designed for 

comfort to satisfy the requirements of health, and to increase our productiveness. 

The present focus on energy efficiency, environmental public health and high quality 

work output, means that it is essential to design good ventilation systems, which fulfil 

the requirements of low energy consumption and good air quality in buildings. 

1.2 Ventilation Techniques 

Ventilation can be achieved by natural ventilation, mechanical ventilation or mixed 

ventilation (natural and mechanical). The study of ventilation and environmental 
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phenomenon is strongly supported by theoretical models such as the analytical 

techniques and the use of Computational Fluid Dynamics (CFD). The latter has been 

widely used [Lun (1995)]. Experimental methods are caring out for the understanding of 

ventilation. 

In the past, ventilation was mainly used to remove smoke and excess heat from the 

buildings to the outside, rather than providing fresh air for comfort. This was done 

during the natural movement of air through any apertures connecting the inside of the 

building to the external environment. Over the years, the main purpose of ventilation 

systems is to achieve the best indoor environment, in order to sustain a healthy air 

quality with minimum capital cost and environmental impact, [Awbi, 1998]. 

1.3 Stratification 

1.3.1 Problem Definition Description 

Stratification is an interesting area of fluid mechanics and heat transfer. It is complex, 

but has many important applications. It depends on the transient behaviour of the fluids 

as they start to layer. Layering that occurs, mainly in the warm environment is called 

thermal stratification, during which a warmer, less dense layer overlies a colder denser 

layer. Between these two layers is a third called the stratified layer, where strong 

vertical differences (gradients) in temperature, and therefore, density exist. It is a 

process driven by density differences; therefore, it is a buoyancy driven phenomenon. 

[Dagestad (1991)]. 

Temperature and density are the main parameters influencing the physical creation of 

stratified layers. Promoting stratification is a key factor to minimize supply airflow 

requirements, in design and operation, where the degree of stratification has to be 

balanced with comfort consideration. In other words, it aims to minimize energy use 

(reduce room air flow) while maintaining comfort (acceptable temperature and 

stratification in the occupied zone). [Webster et al. (2002)]. 
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1.3.2 Practical Examples of Stratification 

Figure 1.3.2 shows a layer of Mediterranean Sea as it enters the Atlantic Ocean and 

moves, horizontally, several hundred kilometres into the Atlantic before stabilizing at a 

depth of about 1000 meters with its own warm, saline, and less dense characteristics. It 

is stratified under the effect of density difference, where the buoyancy forces are 

sufficient to stratify the flow. 

The hot buoyant cloud (thermal) in a stratified environment is established when rising in 

an incompressible neutrally stratified medium. After a period of time, the water motion 

becomes self-controlled due to buoyancy forces, and the vertical coordinate of the water 

may increase until it reaches the point of stability, where the degree of stratification is 

high enough to maintain on the layer, [Makhviladze et. aI. , (1996)]. 

Figure 1.3.2: The Mediterranean ea water as it enters the Atlantic over the Gibraltar (Marine 

Geology, Kuenen, p. 43). 

1.4 Importance of the Problem 

The present work is expected to increase our understanding of the processes of 

stratification and mixing in the mediums of vertical temperature gradient or harp 
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density interfaces. Stratification is considered a significant factor in heat and mass 

transfer due to the variations in density and temperature. It finds applications in solar 

heating systems, polymer technology, industrial reservoirs, atmosphere, cumulus 

clouds, oceans and lakes, producing water, oil and gas in hydro cyclones. Stratification 

due to concentration difference also arises in several chemical processes and systems in 

industry. 

In ventilation applications, the working environment is influenced by a large number of 

variables such as input airflow rate, openings heights, temperature differences and 

surroundings fluctuations. These variables should be changed individually or 

collectualy to produce significant change in flow characteristics. This change is required 

to maintain a safe environment with high quality ventilation, and efficient removal of 

pollutants. 

Recent research has illustrated the needs to control the flow parameters and the 

stratified flow characteristics related to the ventilated working environmental 

conditions. It is essential to improve working conditions and to ensure workers safety 

and comfort. 

Maintaining thermal stratification and stability are very important for both stratified and 

mixed flow. Controlling inside temperature difference and ventilation flow rates is very 

important for both energy costs and ventilation systems efficiencies. 

1.5 The Aims of this Research 

A major part of energy expenditure in modern buildings is due to air conditioning and 

other mechanical means of ventilation [Hunt and Linden (2001)]. 

Temperature and density are the main parameters influencing the physical creation of 

stratified layers. Promoting stratification is a key factor to minimize supply airflow 

requirements, in design and operation, where the degree of stratification has to be 

balanced with comfort consideration. In other words, it aims to minimize energy use 

(reduce room air flow) while maintaining comfort (acceptable temperature and air 

velocity in the presence of stratification). [Webster et al. (2002)] 
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The global aims of the project are: 

• To investigate the phenomenon of stratification in the built environment. 

• To study the parameters that affect the stratified flow such as input airflow 

rates, input heights and output vertical locations. 

• To evaluate the stratified flow characteristics such as stratified layer thickness, 

stratified layer interface level height and the degree of stratification as a 

function of flow parameters. 

• To study the effect of jet momentum of inlet airflow and the inverting of input 

locations on the stratified flow characteristics. 

These targets can be achieved using experimental methods to describe the flow 

characteristics. 

1.6 Thesis Outline 

During the course of the research project, a wide-ranging series of literature reviews 

have been conducted. It was to provide both knowledge background and skills building 

to achieve the aims of the work with good qualitative results that can be considered in 

ventilation applications. The report consists of eight Chapters and related Appendices. 

Chapter 1 provides an introductory view of the phenomenon of stratification, the 

purpose of air modelling techniques and introduces the project scope, framework, and 

general argument structure. 

Chapter 2 presents an overview of the development of experimental, analytical and 

computational methods and highlights methods related to stratified flow that still 

encountered. This review provides a general background to ventilation and stratification 

techniques that can be applied to obtain high-quality results. In addition, it examines the 

fluid mechanics principles, which are required to investigate ventilation problems, its 

solutions and applications, and upon which the predicted results are based. Chapter 2 

also includes an overview of theoretical background and a brief summary of the major 

conclusions drawn from the research investigations identified by literature surveys. 
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Chapter 3 explains the analytical developments of stratified flow characteristics, and the 

experimental set-up, experimental tests, and measuring methods used in the present 

investigations. It also explains the measuring procedures, uncertainty and smoke 

visualisation. 

Chapter 4 studies the effect of time and spatial variations on the stratified flow. It 

summarises the results of experimental and visualisation data to be analysed, compared 

and discussed. The comparative performance of a number of visualisation methods and 

experimental output data is conducted. In this chapter a number of different experiments 

were proposed to clarify the effect of input location (input height), exhaust location 

( exhaust height), airflow rates, and to provide high quality data to be studied and 

analyzed. Details of the experimental results obtained are given and discussed in this 

chapter. 

In chapters 5, some results are presented on a number of experiments on mixing across 

a stratified layer interface when the turbulence is produced by an air jet located at the 

ceiling level in the middle of the environmental chamber. The effect of momentum in 

destroying the stratified layer and mixing the flow using cold and warm jet flow has 

been studied. In this chapter, cases explained in chapter 4 using the recent modelling 

technique are repeated. Smoke and temperature visulisations are also used to validate 

the experimental work and to indicate the effect of air jet flow on the stratified flow 

chracteristics. Chapter 5 also studies the effect of inverting input locations on the 

stratified flow characteristics and the usage of the inversion technique to destroy the 

stratified layer and mix the flow. Both temperature and smoke visualisation are carried 

out. 

Chapter 6 presents a general discussion of the results compared with existing work, to 

classify the agreements and to identify gaps between the present model and the others. 

In Chapter 7 are the key conclusions drawn during the present work and in Chapter 8 

are the suggestions for future work. 

Appendices (AI to A4) include explanation data, published work and supporting details 

for the main lines of argument in chapters 3 through 6. Reference information for the 

technical literature and other source documents are in the body of the report. 
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The schematic models proposed by [Skistad (1998)] and [Calay et al. (2000)] for 

selective ventilation in large enclosures were the basis for the experimental models used 

in this study (Chapter 3). The models were applied, in the environmental chamber, to 

study the parameters that affect the stratified flow and the stratified flow characteristics, 

and are given in chapter 4. In chapter 5, the physical process proposed by [Calay et al. 

(2000)] for momentum jet flow was the basis for the experimental model used to de­

stratify the flow. A different smoke and temperature visualisation techniques are used to 

clarify the phenomenon of stratification in the environmental chamber, and to compare 

with the values obtained from the experiments. 

The thermocouples, which were type K, had resolution within ± 2.5% of the 

temperature range of the tests. However, the repeatability of measurements indicates 

that the real error is less than this. Repeated experiments and measurements give 

consistent results, and consequently confidence that this error and its value are 

meaningful. 
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Chapter 2 

Literature Review and Theoretical Background 

2.1 Introduction 

Thermal stratification is often a dominant feature of the flow characteristics within 

ventilated buildings. There may be many heat sources such as occupants and equipment 

within a room so that a thermal plume develops around them resulting in a vertical 

temperature gradient. These sources may develop pure buoyancy driven plumes or 

mixed convection jets as in the supply of hot air in mechanical heating systems. 

Generally such jets or plumes propagate entraining air from ambient to a height where 

the temperature within the jets becomes equal to the ambient temperature. At this height 

the flow becomes stratified and there may be a zone above or below the stratified zone 

where flow is mixed i.e. the temperature profile is uniform, [Calay et. al. (2000)] 

Theoretical and experimental work has established that the location where flow 

becomes stratified is influenced by ventilation system parameters in relation to the 

geometric size and shape of the enclosure and the power of the heat sources. Most 

studies investigated stratification in enclosures due to isolated heat sources 

approximated as point sources. Normally buildings have many openings, there might 

be mechanical supply or extraction of air by a fan which means that ventilation in 

buildings is often due to the combined effects of pressure and temperature acting 

simultaneously. Analytical solutions can only be obtained for idealised simple cases 

such as natural ventilation for two identical openings. There is no analytical solution to 

predict flow characteristics or ventilation rates for real condition as results strongly 

depend upon the relative positioning of the openings for inflow and outflow, shape and 

aspect ratio of the openings. 

10 



2.2 Governing Equations 

z,w 

...... 

/ V (lz 

~V 
,/ 
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y.v 

1- .~ -
(ly 

Figure 2.2.1: The unit volume representation. 

For general understanding of stratification in ventilation and air conditioning problems, 

the fundamental principles and laws of physics are applied and analysed. The governing 

equations commonly used for the problem under consideration are based on the 

continuity equation for mass transfer, the Navier-Stokes equations for momentum 

transfer and the thermal energy equation . 

• Conservation of mass. 

ap + a(p u) + a(p u) + a(p w) = 0 
at ax ay f)z 

(2.2.1) 

• Conservation of momentum. 

X-Momentum 

a(pu) + a(pu
2 
)+ a(puu) + a(pu w) = _ 8p + ll(a2u + a2u + a2u] + F 

at ax ay f)z ax dx 2 dy 2 dz 2 
x 

(2.2.2) 

V-Momentum 
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a(pu) + a(puu) + a(pU
2 
)+ a(pUW) = _ Op + J.l(a

2
u + a

2
U + a

2
uJ + F 

at ax Oy Oz Oy dx 2 dy2 dz 2 
Y 

(2.2.3) 

z- Momentum 

a(pw) + a(pu w) + a(puw) + a(pw
2

) = _ Op + ll(a 2
w + a2

w + a
2
wJ + F 

at ax Oy Oz Oz dx 2 dy2 dz2 z 
(2.2.4) 

• Conservation of energy. 

In the above equations, u, v and ware the local air velocities in x, y and z-directions, p 

is the fluid density, p is the pressure, J.l is the dynamic viscosity, T is the temperature, 

• 
F x, F y and F z are the body forces (gravitational forces), E is the energy rate, Q is the 

total rate of heat added, and a = kip cp is the thermal diffusivity in which k is the 

effective thermal conductivity and cp is the specific heat of the fluid at constant 

pressure. 

Assuming that the stratified flow characteristics across the direction of the flow (y­

direction) are uniform, the flow is assumed to be two dimensional. In ventilation 

applications, the flow is assumed to be steady, Newtonian, incompressible and 

Boussinesq. The fluid properties are constants in a limited temperature range, except for 

the buoyancy term where the density is allowed to vary, which is known as the 

Boussinesq approximation [p = P <Xl (1 - ~(T - Teo ))]. As a result of buoyancy forces, the 

body forces (gravitational force) are proportional to the density gradient, and so to the 

temperature gradient. 

• Conservation of mass becomes: 

au Ow 
-+-=0 
ax Oz 

F or two dimensional flows, the flow of the au = 0 component is neglected. 
Oy 
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• Conservation of momentum becomes: 

(2.2.7) 

• Conservation of energy becomes: 

(2.2.8) 

In the above equations v is the kinematic viscosity , Too and p eo are the reference 

temperature and density, and P = _l op = _l (Peo - p) is the volumetric thennal 
p or P (Teo - T) 

expansion coefficient. 

In order to solve the governing equations for a stratified flow, they must be simplified 

on the basis of acceptable assumptions. For an incompressible medium the density 

depends only on the temperature T. In environmental problems, the range of 

temperature variations is comparatively small. As long as the temperature variation is 

not large the temperature variations obeys the equation of state, and the Boussinesq 

approximation is applicable. 

Chamber scales are employed for non-dimensionalisation. Therefore, all distances are 

nonnalized by chamber height, H, and velocities by chamber equivalent velocity, U 

defined by U = Qc +Q h where B is the chamber width. 
BH 

• u • u • x 
u =- u = x = 

U U H 

• z Re= UH v 
z = Pr=-

H v a 

T* = (T - Tt) Gr = gp(T - Tt)H3 p( dT) 
(T2 - Tt) v 2 Ri = g dz ~ g'H 

(:)' u' 
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where T" is the dimensionless temperature, in which T\ and T2 are the reference 

temperatures chosen as the measured temperatures at the bottom and the top of the 

environmental chamber, Re is the Reynolds number, Pr is the Prandtl number, Ri is the 

Richardson number, and Gr is the Grashof number. 

Using the non-dimensional scheme and dropping the stars (*) for convenience, the 

governing equations may be written as follows: 

• Conservation of mass: 

au Ow 
-+-=0 ax f)z 

• Conservation of momentum. 

or 

or 

• Conservation of energy (2.2.8) becomes. 

or 
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(2.2.10) 

(2.2.11) 

(2.2.12) 

(2.2.13) 

(2.2.14) 



In order to apply the results obtained by small-scale to correspond with the natural 

situation, the sources of buoyancy must be scaled" [Linden et al (1990)]. Therefore, the 

main conserving ventilation factors applied to attain the similarity between buoyancy­

driven flows at small-scale model to that at full-scale model [Hunt and Linden (1999)] 

are the Re, Pe and Fr number: 

I 3 

::fuImodl_sca1el e = ( ~~odel J2( H mod el J2( V full-scale J = 1 
g full-scale H full-scale V mod el 

(2.2.15) 

::fuImodl_SCelaie = ( ~~odel J~( H mod el J%(Kfull-SCaie J = 1 
g full-scale H full-scale K mod el 

(2.2.16) 

And 

(2.2.17) 

Where U model denotes the speed of the fluid driven by the model and U full-scale denotes 

the speed in the full scale, g' is the reduced gravity defined as g' = g ~p = g ~ T 
P T 

The dimensionless parameters are the Reynolds numbers, Re = UH , the Peelet number 
v 

UH U 2 

Pe = _. and the Froude number Fr = - . 
K gH 

In the above equations, the velocity U scales for flow driven by a reduced gravity is 

( 'H)1/2H 
given by (g'HY/ 2, Re = ....:;;g-----''---­

V 
d (g'HY/2 H . h· h . h k· . an Pe = m w lC V IS t e mematlc 

K 

viscosity K is the coefficient of molecular diffusivity, ~ is the coefficient of expansion 

and H is a typical vertical scale. 

For modelling of natural ventilation in small-scale laboratory experiments, [Hunt and 

Linden (1999)] characterized the reduced gravity g' with the dimensions of It-2 
, so 

that g~odel (1 c
2 

Lode) 
, g~ll-scale = (1 C 2 )full-SCale 

(2.2.18) 
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from which, 

I 

t model (g~odel X lfull-scale J2 
t full-scale - g :WI-SCale I mod el 

(2.2.19) 

and, 

I 

= (lg~l-scale J2 
19model 

(2.2.20) 

The source of buoyancy scaled by [Linden et al (1990)] is 

B = gp W ,where ~ is the thermal coefficient of expansion, W is the heat flux and cp is 
pcp 

the specific heat capacity at constant pressure. The dimensions of B are 14 t-3 and so 

equivalent scaling can be introduced for the laboratory scale. 

For air, where the density differences were created using heat, the Reynolds and Peclet 

3 

numbers at the small-scale were reduced by ( H model J2. For laboratory models of 
H full-scale 

height ratios from 1: 20- 1: 100, the Reynolds and Peelet numbers were reduced by two 

or three orders of magnitude. By using fresh water as a working fluid and salt water to 

produce density differences in the system, the decrease in the magnitude of the 

dimensionless groups due to the change in scale is counteracted as Vair >->- V water and 

K heat >->- K salt where K heat and K salt denote the diffusivities of heat in air and salt in 

water respectively[Linden et al (1990)]. A considerably larger density differences can 

be achieved experimentally using fresh water and salt water, than density difference in 

air due to temperature change, hence g~odel >->- g~l-scale. Dynamical similarity is then 

achieved at small-scale in the laboratory as g~odel >->- g~l-scale and U model -<-< U full-scale· 
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2.3 Previous Work Related to Stratified Flow 

2.3.1 Review of Analytical Work 

During spray painting of objects, stratification occurs due to over-spray and solvent 

vapours. These layers may cause an explosion source or fire hazards. It may cause 

toxicity by absorption or inhalation of solvent vapours and fine over spray particles, in 

the place of work [Wander (2002)]. As a result, ventilation is used to remove particles 

of over spray to protect the texture of the surfaces already painted and those yet to be 

painted. This can be done by removing over-spray and solvent vapours by ventilation 

stream to the external environment to be exhausted [Wander (2002)]. 

Skistad (1998) and Calay et al (2000) introduced the concept of selective ventilation, 

which utilises the principle of "selective withdrawal". In this ventilation method the 

upper part of the room is divided into different regions using temporary walls whilst the 

air is exhausted at the height of stratification where the extracted heat or contaminant 

concentration is highest. 

Thermal stratification is very important for efficient ventilation, fire exhaust, and solar 

heating. It affected by the flow and the heat transfer parameters that can be improved by 

controlling of these parameters, [Hahne and Chen, (1998)]. 

Mathematical and experimental investigations were done by [Hunt and Linden (1999)]. 

The study was to describe the natural ventilation using combined effects of buoyancy 

and wind. They derived a mathematical model for stratified layer interface height based 

on wind speed and openings heights. 

Analytical study on the enhancement of natural ventilation in a solar house was 

presented by [Dai et al. (2003)]. They found that a solar adsorption cooling 

effectiveness, using solar house natural ventilation, could attain a value of 0.12 for COP 

(coefficient of performance), which increases ventilation effectiveness and provides 

cooling to the room without any change in humidity. 

The position of neutral buoyancy, (the position where pressure in the room equals that 

in the exterior), was investigated by [Andersen (2003), Li et al. (2000), Fitzgerald and 

Woods (2004)]. [Li and Delsante (2001)], and [Chen and Li (2002)] investigated the 
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effect of both wind and thermal buoyancy on the position of neutral buoyancy. They 

used vents at multiple levels, and applied mass, energy and momentum equations. It 

was found that the position of neutral buoyancy can be related to the ratio of the upper 

and lower vent areas depending on the nature of the heat source. The analyses of [Li, et 

al. (2000)] for neutral height and pressure lines are shown in Figure 2.3.1. 

z" z* 

.*= • 

:z - r:. z'=o 

-' 
Figure 2.3.1: Pressure profiles across an opening in a single-zone building ILi et al (2000)1. 

Chen and Li (2002) studied the effects of buoyancy source, opening sizes and locations 

of a single zone building on displacement ventilation. The investigations were for three 

level openings. They found that the ventilation mode is a function of buoyancy source 

and geometries. Also they found that the location of the stratification interface level 

height is a function of the geometrical parameters and independent of the strength of 

buoyancy source. The results of [Chen and Li (2002)] were in an agreement with 

[Linden et al. (1990)] that the stratification within a space depends on the entrainment 

produced by buoyancy sources upon the geometry of the sources and the openings 

rather than the source strength while the strength of stratification however depend on 

the source strength. 

A relationship between neutral height of air distribution and ventilation load was 

investigated by [Xing and Awbi (2002)]. Their results were obtained for a ventilated 

room, under several activities, using displacement ventilation. The neutral height above 

the heat source versus ventilation load based on mean temperature investigated by [Xing 

and Awbi (2002)] is shown in Figure 2.3.2. 
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Figure 2.3.2: Neutral height versus ventilation load (based on mean temperature) in ventilated 

room, IXing and Awbi (2000»). 

Mundt (1994) found that the pollutants could be locked in at different levels (layers of 

pollutants). The distribution of pollutants is very sensitive to disturbances; that can 

cause a great decrease in the local ventilation effectiveness. "In spite of this, or perhaps 

because of this, a person can obtain a good air quality in the breathing zone, even if this 

zone is in a polluted layer. The convective plume around a body breaks through the 

polluted layers very rapidly" [Mundt (1994)]. 

The temperature gradient in a room is always positive (or zero) and increases up to the 

ceiling, while the contaminant concentration might have another form with a maximum 

somewhere in the middle of the room. The temperature gradient is very much dependent 

on the ventilation flow rate and not so much on the position of the heat sources [Mundt 

(1995)]. The contaminant removal effectiveness (the system's ability to remove 

contaminants from the space.), in displacement ventilation, was found to be related to 

the ventilation flow rate, and very sensitive to the level of the source and its position, 

[Mundt (2001)]. However, [Hagstrom et al. (2000)] found that it was a function of both 

the location and the power of the sources in relation to the supply and exhaust openings. 

Heat loss in solar storage tanks was basically the main (destructive) item among several 

loss factors, investigated by [AI-Najem (1993)]. [AI-Najem and EI-Refaee (1997)] made 

a comparison study for prediction of a turbulent mixing factor (eddy conductivity) at the 

inlet and outlet of a thermal storage tank, also the performance of thermal stratification 

in that tank. The model showed a good agreement with the experimental data of 

[Loehke et al. (1978)]. The analysis of [Alizadeh (1999)] can be used to link the flow 
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parameters in the stratified layer using the properties of flow in the lower and upper 

zones. Figure 2.3.3 shows the vertical temperature distribution inside the tank at the end 

of the simulation of [Alizadeh (1999)]. As seen in Figure 2.3.3, the temperature 

distribution of the storage tank is in a well stratified state 
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Figure 2.3.3 shows the vertical temperature distribution inside the tank at the end of the simulation 

resuts evaluated by IAlizadeh (1999J. 

2.3.2 Review of Experimental Work 

Behne (1999) investigated the combination of cold ceiling and mixing ventilation 

system in the test chamber. Both displacement and mixing flow systems were studied 

and compared directly. Both were evaluated under the same conditions. He evaluated 

both the contaminant removal efficiency and the vertical air temperature rise. His results 

showed that the buoyant airflow rate is much higher than the supply airflow of 

about 400 m 3 / h . The variation was due to the re-circulation that takes place in the test 

chamber. 
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Slater et al. (2003) studied the breathing zone, and the concentration levels generating 

during Gas Metal Arc Welding (GMAW) of mild steel within a defined working 

environment. They found that the use of ventilation techniques to control welder 

exposure from hazardous fumes could aid in reducing consideration to meet 

occupational exposure standards. Also, the most effective method of reducing operator 

exposure of welding fumes was the local extraction ventilation, which produces 

concentration levels below the recommended threshold of Smglm3
• 

Kikuchi et al. (2003) evaluated the effectiveness of local ventilation for industrial 

workplaces. The effectiveness was evaluated using the ratio of the average contaminant 

concentration in the occupied zone to the concentration of completely mixed indoor air. 

Lee and A wbi (2004) studied the effect of interior partitions and the gap under the 

partitions on indoor air quality. Their results showed that the gap under the partitions 

has more significant effect than the partition height. This was due to the cause of 

dividing the supply airflow into two parts above and below the partition. 

Karimipanah (1999) studied the deflection of wall-jets in ventilated enclosures. The 

experiments were described by pressure distribution using a full-scale test room with 

varying room length. In the same manner, [Jeremy et al (2004)] presented a laboratory 

experiment to study the transient filling of a room with a buoyant dense fl uid. They 

found that the steady two-layer stratification was established in the room. The height of 

the interface between the cold incoming air and the warm overlying air was dependent 

on the aspect ratio of the doorway to door height. 

Wood et al. (2003) established a two-layer stratification and steady displacement flow 

in a room of turbulent plume originating from the top. The results showed that, the 

interface location is not only dependent of the opening geometry but also the source 

conditions, such as location and direction (upward or downward). 

2.3.3 Review of Numerical Work (CFD) 

A series of experimental tests were carried out by [Jalurla et al. (1998)] to identify the 

basic nature of the transport across a horizontal vent in a compartment, driven by 

pressure and density differences. By [Karimipanah and Awbi (2002)] to evaluate the 
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perfonnance of impinging jet ventilation system compared with a wall displacement 

ventilation system. Also by [Allocca et al. (2003)] to detennine the effects of buoyancy 

and wind on ventilation airflow rates whilst [Bertin et al. (2002)] studied the wall-fire 

behaviour in a ventilated room. The results of [Bertin et al. (2002)] are shown in Figure 

2.3.4. 
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Figure 2.3.4: Evaluation of the mean temperature after thermal stabilization (under trong 

stratification) and for various height values (Xth=O.S9 m and Zth=O.20S m). (G. Bertin et al. 

(2002) I. 

Further series of computational and experimental studies were done by [Holford and 

Hunt (2003)] to provide a prediction for thennal stratification and airflow rates, by 

extending the theory of displacement flow developed by [Linden et al. (1990)]. The 

experiments of [Holford and Hunt (2003)] were done on atrium buildings, using zones 

and field models. An atrium is a central feature of many modern naturally ventilated 

building designs. [Poreh and Trebukov (2000)] studied ventilation in a atrium under 

wind effects (speed and direction), and warmed atrium ventilation by direct solar 

heating as studied by [Joanne et al (2003)] . 

Various numerical studies were used to predict ventilation efficiency. However, the 

quality of such predictive models on the numerical methods and appropriate turbulence 

models were investigated by [Woodburn and Britter (1996)] , [McGrattan et al. (1996)] , 

[Chow (1996)] , [Kunsch (2002)] , [Holford and Hunt (2003)] , [Karimipanah (1999)] , 
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[Murakami and Kato (1989)], [Gan (2000)], [Fukuhara and Tsuji (2003)], [Nagasawa 

(2003)], and that of [Dewan et al. (2003)] who showed the numerical techniques can 

provide a very good prediction of the stratified flow behaviour using effective 

parameters. 

An experimental model (Figure 2.3.5) for the calculation of temperature gradients and 

convection flows of different heat sources were presented by [Mundt (1995)]. As 

investigated by [Mundt (1995)], temperature gradients and convective heat flows are the 

main parameters in describing displacement ventilation. The temperature gradient is the 

determining factor of temperature profile and contaminant concentration, whilst the 

convection flows influenced the air quality in the room. The results of [Mundt (1995)] 

suggested that "the temperature gradient in a room of moderate height with 

displacement ventilation is very much dependent on the ventilation flow rate and not so 

much on the position of the heat source". 

Similar to [Mundt (1995)], Bouzinaoui et al. (2005) presented an experimental study of 

thermal stratification in a ventilated room of a heat source. As the temperature 

stratification arises within this test room. A plume of an interface of significant 

thickness was identified by the maximum standard deviation of temperature fluctuations 

as shown in Figure 2.3.6, where C is the fluorescent concentration (mol/m3
), T is the 

temperature CC) and cr is the slandered deviation of temperature variations CC). 

Figure 3.3.5: The principle of displacement ventilation showing temperature 

and contamination concentration profiles, as presented by (Mundt (1995»). 
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Figure 2.3.6: Vertical profiles of normalized tracer gas mean concentration, mean 

temperature and temperature fluctuation standard deviation, as presented by 

rRmn~inaolii et al. (200~)1. 

2.3.4 Turbulence in Stratified Flow 

Laminar layers of stratified flow are stable with small perturbations. For large values of 

Ri number where the flow is still stratified, turbulence may exist in the stratified flow 

due to the local instabilities of concentrated vertical motion, [Calay et at. (2000)]. 

Subbarao and Muralidhar (1997) studied the effect of turbulence in isothermal and 

stably stratified flows. They investigated the effect of shear in promoting the growth of 

turbulence in isothermal flow. Their experimental results showed the vertical profiles of 

temperature with significant fluctuations. The temperature fluctuations were 

comparatively high in the experiment of strongest stratification. They related these 

fluctuations to the local temperature of the flow, where the sign of gradient of 

temperature fluctuation was the same as the sign of mean-temperature gradient. 

Yam et al. (2003) provided an analytical technique using the fluctuation of both indoor 

and outdoor temperatures. The instantaneous temperature was the mean and the 

fluctuating component. They showed that, the magnitude of the indoor air temperature 

fluctuation is always smaller than that of the outdoor air temperature, Figure 2.3.7. Also 

they found that, for large time constant, the fluctuation of indoor air temperature with 

time becomes small, Figure 2.3.8. 
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Figure 2.3.8: The non-dimensional indoors air 

temperature fluctuation LiTj (normalized by 

the outdoor air temperature fluctuation LiTo) 

as a function of the time constant, Yam et al. 

2.3.5 Stratified Flow by Salt-Baths and Smoke Visualisation 

Salt-baths and smoke visualisation are used as a simple process to display the results in 

an easier form of observation. The salt-baths of easy experimental set-up can scale the 

flow characteristics in ventilated areas, where the variations of density are proportional 

to the variations of temperature. This technique was developed by [Linden et al. (1990)] 

for the fluid mechanics of natural ventilation in buildings. The technique used salt as a 

medium to increase the density of examined flow. This allows the effect of buoyancy to 

be made much greater than those in the real experiment, and so long, the reduced 

gravity. On the other hand larger buoyancies reduce the test time such that 

measurements were difficult to take. 

Salt-bath laboratory techniques have been used in a number of ventilation studies. 

[Holford and Hunt (2003)] mentioned that the low value of the kinematic viscosity of 

water, and the large buoyancy of saline solution, give an approximate dynamical 

similarity between airflows in buildings and the flow of saline in salt-baths, where the 

non-dimensional variables are defmed in the same manner for both flows. On the 

contrary, [Howell and Potts (2001)] presented an experimental temperature stratification 

established within a full-scale enclosure to confIrm the salt-bath model of [Linden et al. 

1990]. They found that an agreement has been reported when neglecting the mechanism 

of thermal radiation and diffusion because the salt-bath technique also neglects it, 
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"Whilst the kinematics viscosity of water is only about one-tenth that of air, the 

diffusivity of salt in water is less than one ten-thousandth that of heat in air (Lane-Serff, 

1989). The salt-bath technique is, therefore, only suitable for modelling flows where 

diffusion of heat is insignificant, since salt diffuses too slowly in water to represent the 

diffusion of heat". 

In water experiments, the radiative heat transfer is not significant; so that the 

temperature and concentration stratifications are coincide. In full-scale air modelling 

experiments, the concentration shows larger stratification than the temperature, where 

radiation is reducing the temperature gradient. Whilst the first technique is popular; the 

second is given little attention, [Li et aI, (1993)]. 

"There are two main advantages of modelling flow ventilation using small-scale models 

in water. The first is that the flow visualisation is very straight forward, and complex 

flow patterns can be easily determined. The second advantage is that it is possible to use 

large values of reduced gravity g' = gAp (much larger values than is possible in air 
p 

models) so that realistic Reynolds numbers and Peclet numbers (Re and Pe) may be 

realized. Thus direct similarity is achieved. In addition it is possible to make 

quantitative measurements of velocity and temperature (salt concentration) distribution" 

[Linden et al. 1990]. 

Using dyed saline solution, [Jermy and Woods (2004)] classified the flow and mixing 

produced by exchange processes in displacement ventilation and mixing ventilation. 

The results are illustrated in Figure 2.3.9. It was observed that for some flow, steady 

two-layer stratification was established with a certain interface height under a finite 

source of buoyancy in the room, whilst the others leaded to a well-mixed interior. 

Small-scale modeles by [Linden et aI, (1990)], [Linden (1995), (1999)], [Hunt and 

Linden (1999)] and others were used by many researchers to display the flow 

characteristics of ventilated enclosures. [Chenvidyakarn and Woods (2005)] concluded 

that "the using of small scale was not an exact replica of the full-scale, while it 

replicates its key ventilation features". As developed by [Linden et al. (1990)] and 

written by [Holford and Hunt (2003)], the low value of the kinematic viscosity of water, 

and the large buoyancy of saline solution, give an approximate dynamical similarity 

between airflows in buildings and the flow of saline in salt-baths, where the non-
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dimensional variables are defined in the same manner for both flows. [Hunt and linden 

(1999)] simulated the combined effect of buoyancy and wind in natural-displacement 

ventilation. Using small-scale technique, the experimental observations and the 

mathematical model developed showed a good agreement over a wide range of density 

differences and wind speeds. 

Figure 2.3.9: Vertical profiles of transmitted light intensity measured during a transient 

experiment of (10 cm high doorway, 90 seconds after opening), IPhillip and Woods (2003»). 

In the research by [Linden et al. (1990)], the stratified layer interface level height was 

predicted as a sharp interface between two layers of air of differing temperature, clean 

and polluted zone, which were in opposition to the results of [Mundt (1995)]. Also, the 

mathematical model of [Linden et. al. (1990)] didn't explain the temperature 

distribution within the test-room. Both diffusion of heat and thermal radiation were 

neglected, while the remaining mechanism for heat transfer is convection. Therefore, 

two layers of air of differing temperatures can coexist in the same confined space 

without any diffusion over the sharp interface, [Howell and Potts (2001)]. 

Despite its capability to represent the flow of air in rooms, enclosures and buildings, 

and the quantitative agreement between the temperature stratified experiments and the 

salt stratified experiments, the small-scale technique has some disadvantages. [Howell 

and Potts (2001)] confmned that the salt-bath modelling technique and related 
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mathematical model of [Linden et. al. (1990)] was not appropriate for the prediction of 

natural displacement ventilation flow driven by a source of buoyancy at floor level. 

From Figure 2.3.9, the behaviour of air and water flow shows that the viscosity of 

liquids and gases is strongly affected by the temperature. The viscosity of gases used for 

the calculation is the power law of temperature difference, which is given by: 

( )

0.7 

~=J, (2.3.1) 

Whilst the empirical fit for the viscosity of liquids is given by: 

J..l To To 
( ) ( )

2 

ln~=a+b T +c T (2.3.2) 

where 11o is the value of viscosity at a reference temperature To, which is 273· K , a, b 

and c are constants (a = -1.94, b = -4.8 and c = 6.74) and T is the temperature in • K . 

Figure 2.3.10 shows that the viscosity of water strongly decreases if the water 

temperature is increased. On the contrary, the viscosity of air slightly increases by 

increasing the air temperature. 

The variation in the behaviour of the fluid is referred to the cohesive and intermolecular 

forces within the fluid. Therefore, it is reflected on the behaviour of liquids and the 

degree of agreement between the results obtained using small-scale technique and that 

of using full-scale technique. 

The thermal diffusivity, which is related to the steady state thermal conductivity through 

the equation 

k 
K=-- (2.3.3) 

pCp 

where, K is the thermal diffusivity, k is the thermal conductivity, cp is the constant 

pressure specific heat and p is the density. It is a measure of the ability of a certain 

body to change its temperature. 
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Figure 2.3.9: The viscosity ratio for air and water as a function of temperature 

(aerodynamics for students 2006). 

From the verification of [Howell and Potts (2001)] and [Howell and Potts (2002)] the 

salt-bath modelling technique and related mathematical model of [Linden et. al. (1990)] 

have limited applications in natural and displacement flows. Therefore the salt-bath 

technique is not appropriate to model the ventilation flows in full-scale where both 

radiation and molecular diffusion coexist. While the temperature profiles shows a 

significant layer between upper and lower zones in the full-scale test-room, the model of 

Linden showed a sharp interface between two layers of different temperatures [Howell 

and Potts (2002)]. 

From the above analysis, it is confirmed that the small-scale modelling technique is not 

suitable for studying the stratified flow where effects of radiative and diffusive heat 

transfer are significant. In order to overcome this, the air modelling technique more 

realistically describe the temperature distribution within the full-scale chamber, and the 

full-scale technique is more appropriate to model the stratified flow in the built 

environment. Where the full-scale environmental chamber is used for testing realistic 

temperature-stratified flow, the full scale model can predict the flow behavior in a more 

realistic way concerning diffusivity and interpret the stratified flow behavior naturally 

more than the salt method. 
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A senes of visualisation tests were conducted by many experimental researchers. 

Ventilation with heat transfer inside a ventilated enclosure using temperature 

measurements, flow visualisations and numerical simulations have been done by 

[Dubovsky et al. (2000)]. The visualisation technique was performed using smoke 

sticks. The comparisons of smoke visualisation results with numerical results were in 

agreement. The results of [Dubovsky et al. (2000)] are shown in Figure 2.3.11. 

l 

Figure 2.3.11: Results for the ventilated steady state: (a) by smoke vi ualization; (b) by 

numerical simulation; (c) the simulated temperature field, IDubovsky et al. (2000)1. 

performed by [Ziskind et al. (2002)]. They studied the natural convection using a hot 

plate at the top of the building. They found that the effective ventilation could be 

achieved by means of natural convection heat transfer from the hot element at the top of 

the building heated by solar radiation. The experimental results of [Zi kind et al. 

(2002)] are shown in Figure 2.3.12. 
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2.4 Previous Work on the Effect of Input and Exhaust Duct 

Locations 

The location of the interface or the stratified layers and the strength of stratification are 

depending on the location of the exhaust and the temperature and momentum 

differential across the enclosure [Calay et al (2000]: 

A ventilation of air supplied to both occupied and unoccupied spaces within buildings is 

necessary in order to replenish the oxygen supply to act as a fluid to dilute the carbon 

dioxide, odours and process emissions. It also necessary to prevent the build-up of 

potentially explosive vapour mixtures in the unoccupied plant spaces to provide air 

movement as a constituent part of comfort, and to control airborne contamination in 

industrial ventilation. Inside the enclosures, ventilation is used to remove pollutants, 

harmful gases and particulates from the multipurpose space, where different levels of 

pollutants are produced during different activities such as, welding, assembling and 

painting that take place side by side in one big hall, where ventilated air must conform 

to standards to ensure workers safety. It must be supplied into the hall until the 

contaminant concentration decreases below the harmful levels, [Calay et al 2000]. 

The configurations of building rooms and especially the location of inlet and outlet 

openings in relation to dominant wind direction at the site have major effects on the 

ventilation rates in buildings. Locating inlet openings near high-pressure surfaces of a 

building, and exit openings at low-pressure ones produces higher flow rates through 

windows [Ayad (1999)]. 

The thermal stratification generated by a localised source of heat at floor level in a 

confined space is of considerable interest to building ventilation. Many sources of heat 

generated in building may be regarded as being localised e.g. computers, occupants etc., 

and knowledge of the developing vertical temperature profile produced by these sources 

is required before air quality and occupant comfort levels can be determined. In general, 

these sources may be classified as either a 'pure' buoyancy source, e.g. an electric fire or 

a radiator in a hot water heating system, or as a 'forced' buoyancy source which 

characterised by non-zero momentum fluxes, e.g. in a heating system in which warm air 

is injected into space, [Hunt and Linden (1999)]. 
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Teitel and Tanny (1999) developed a theoretical model to study the effect of openings 

height and wind speed in green houses. It was based on non-dimensional mass and 

energy conservation equations. The model was calibrated against experimental results. 

The results showed that ventilation, in greenhouses, was increased by increasing the 

height of the openings, the wind speed, and by decreasing the solar radiation 

Sinha et al. (2000) discovered, numerically, the velocity and temperature distribution of 

wann air introduced in a room at high values of OrlRe2 • Solutions were presented for 

various locations of inlets and outlets, and for different values of Or and Re numbers. 

The results of [Sinha et al. (2000)] showed that when the location of the outlet was at 

higher level than the inlet the location led to a better temperature distribution. When the 

location of the outlet was at a lower level than the inlet; 

1. Increasing Or number made the wann jet almost horizontal to flow downwards 

towards the exit. 

2. Increasing Or number increased the intensity of recirculation and yielded 

uniform temperature distribution. 

Chen et al. (2001) studied the displacement ventilation in a single-zone building using a 

simple multi-layer stratification model. The flow rate was driven by a heat source 

distributed uniformly over a vertical wall. Experiments were carried out using a fine 

hydrogen bubbles generated by electrolyses in a water tank. Theoretical expressions 

were obtained for the stratification interface height and ventilation flow rate. As 

concluded by them, the theoretical and experimental results of [Chen et al. (2001)] 

compared with those obtained by an existing model available in the literature were in 

agreement, while the upper and lower layers were might be different from those of other 

layers. 

The location of the interface of the stratified layers and its strength is dependent on the 

location of exhaust opening, and the temperature and momentum differential through 

the enclosure [Calay et al (2000)]. The sizes and locations of the room openings must be 

chosen to get the balance between the depth and the temperature of the wann layer in 

the upper zone. The depth must be sufficient to drive the required airflow, while the 

temperature of the warm zone is in the range, and the warm layer is above the level of 

occupied zone, [Hunt and Linden (2001)]. 
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2.5 Previous Work of Mixed Flow and Air Jets 

Mixing ventilation is widely used in offices and commercial buildings [Yue (1999)]. In 

mixing ventilation, the fresh air is introduced to mix through the ventilated space. The 

openings are arranged so that the relatively cool air enters at high level, while the 

relatively warm air enters at low level. In this case, mixing ventilation will produced 

due to buoyant convection of flow, [Linden et al. (1990)]. 

In this type of ventilation, the air is supplied from the ceiling with a speed much higher 

than these accepted in the occupied zone. Due to the air entrainment, both jet speed and 

temperature differences become smaller, which dilute the contaminant to an amount 

acceptable in the occupied zone [Yue (1999)]. 

"A jet of air is the flow resulting from the interaction of the fluid issuing from an 

opening with the surrounding fluid. This process is called entrainment of the secondary 

fluid (fluid surrounding the jet) by the primary fluid (the fluid issuing from the 

opening)" [Awbi (1998)]. 

Plumes are defined as "buoyant jets where the initial jet momentum is not significant, or 

has become completely dominated by the buoyancy force" [Baines P. G. (2002)]. 

A plume generated by a heat source will go upward. During its rising towards the 

ceiling, the volumetric flow rate will increase by entrainment of surrounding air. 

Therefore, a circulation of polluted air is formed in the upper region, while another large 

circulation flow is also created in the lower region. In between a momentum based 

separation was yielded and a stratified layer was established since each circulation 

contains its regional properties with little momentum interaction, [Hee-Jin and Dale 

(2001)]. Hence, "the strength and size of those circulation flows are main factors in 

characterising the stratification level". [Hee-Jin and Dale (2001)] 

Linden et al. (1990) found that when the room's upper opening size was smaller than 

the lower one, the fluid flows through the small opening is high enough to work as a jet. 

The jet introduced will cause an entrainment buoyant fluid across the interface. Because 

of the high-density gradient above and below the interface, the interface descends faster. 

When the output is somewhere down the ceiling, the amount of mixing is much greater 

and the interface is diffuse. In natural ventilation under the effect of both buoyancy and 
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wind driven velocity, [Hunt and Linden (1999)] found that the amount of mixing was 

increased as the initial Froude number increased, and so the momentum of the incoming 

buoyant jet is increased. 

The flow pattern in a large enclosure is dominated by convection currents and thermal 

stratification. Stratification is very common in buildings with a single large open space. 

Warm air rises under the influence of buoyancy forces, which cause a positive 

temperature gradient between the floor and the ceiling. Activities such as heating and 

welding act as additional heat sources and contribute to already existing temperature 

gradients across the space. 

However, in other buildings where indoor air quality load are important, stratification 

effects can be desirable. Stratification in cooling seasons can reduce the cooling loads 

because the warm stratified layer below the ceiling acts as an insulating buffer, which 

reduces the roof and lighting heat gain components. An additional reduction in cooling 

load is achieved by locating the outlet extract at the height of stratification because heat 

extracted per unit of mass flow would be significantly higher than if the extract was 

positional below the stratified layer. There are many experimentalists and theoreticians 

who have investigated the effect of jets or plumes on the stratified layer characteristics, 

[Hung et al (1999)], [Shy (1999)], [AI-Najem and AI-Refaee (1997)], [Redondo et al 

(1996)], [Cardoso et al (2001)], [Karimipanah (1999)], [Murakami et al (1996)] and 

[Bloomfield and Kerr (1999)]. 

[Hung et al (1999)] showed that the thermal stratification reduces the heat transfer rate 

from vertical surface. They also found that non-Darcian and thermal dispersion effects 

have significant influences on velocity and temperature profiles as well as the local heat 

transfer rate. 

Shy (1999) investigated experimentally the mlxmg processes involving large-scale 

motion and chaotic small-scale motions across a sharp density interface using a pH­

sensitive, laser induced fluorescence technique in a water tarue He used a turbulent 

round jet impinging from above on the sharp density interface over a flow Reynolds 

number of (2500< Re <25,000) and a flow Richardson number of (0< Ri< 5) based on 

the local jet scales at the interface. He found that at large Re, molecular mixing first 

occurs at the perimeter of the jet front, forming a mixed layer, in contrast to the case of 

a jet in a uniform environment. 
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AI-Najem and AI-Refaee (1997) studied numerically the transient behaviour of thermal 

stratification in storage systems using a computer code based on Chapeau-Galerkin 

integral formulation. Their results showed that the turbulent mixing (or eddy 

conductivity) factor caused by hydrodynamic disturbances at inlet and outlet ports of 

storage tank plays an important role in the performance of thermal stratification storage 

tanks. 

Redondo et al (1996) used detailed flow visualisation as well as density measurements 

in zero-mean-flow laboratory experiments involving grid-stirred turbulent mixing 

across a density interface and bubble-induced mixing. They found that the overall 

mixing efficiency of the processes depends on the local Richardson number as well as 

on the local vorticity. 

Cardoso et al (2001) found that when small particles sediment from a surface current 

generated by an axisymmetric turbulent plume, the concentration of particles in the 

environment surrounding the plume is larger at higher levels compare with that at lower 

levels. This distribution of particles in the environment results in an unstable density 

stratification and as a result, convection in the environment may result. 

Karimipanah (1999) conducted measurements of the pressure along the perimeter of a 

slot ventilated room for different room sizes. He found that the momentum of the jet at 

the end of the room is decreased with increasing room length. They could not predict 

the comer flows by their CFD simulation using the linear eddy viscosity or standard 

stress models. However they suggested that these effects may be captured by using a 

second moment closure turbulence model with a new near wall approach. 

Awbi (1998) used an experimental environmental chamber to compare the effectiveness 

of both mixing and displacement ventilation. He found that using displacement 

ventilation is more energy efficient than mixing technique. In mixing process, the air 

was normally supplied from high levels causing a flow jet mixing the injected air with 

the domain. [A wbi (1998)] found that the process of removing heat and contaminant 

from the room involves both diffusion and convection. Therefore, it is influenced by the 

characteristics of both the air supply and the room geometries, such as jet speed and 

momentum, temperature difference between air injected and the domain, position and 

type of air supply, distribution of heat and contaminant sources, etc. 
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Laboratory experiments of a jet impinging on a stratified interface were done by [Cotel 

et al. (1997)]. The entrainment of both vertical and inclined (15°) jets was studied using 

water tank experiments. At Ri<lO, [Cotel et al. (1997)] found that the entrainment of 

vertical jet was proportional to Ri"II2, while the inclined jet was proportional to Ri"312. At 

Ri> 10, the results of [Cotel et al. (1997)] show the entrainment rate was independent of 

Ri, where the interface is effectively flat, according to their experimental model. 

Bloomfield and Kerr (1999) preformed an experimental and theoretical investigation of 

the flow and density distribution arising from the upward turbulent injection of a dense 

fluid into a stratified environment of finite extent. They found that as more dense fluid 

is added through either a point or line source, both fountain and the environment evolve 

with time. They applied their results into two problems: the replenishment of magma 

chambers and the heating or cooling of a room. 

U sing a ceiling jet, it is possible to ventilate the working zone without destroying the 

stratified layers. This can happen by injecting the air of low momentum through a large 

diameter jet or plume, where the entrainment per unit area of jet is inversely 

proportional to its perimeter. This type of ventilation is very useful in many applications 

like in theatres and television studios, where the inlets can't be fixed close to the floor 

or changeable decorations [Calay et al. (2000)]. 

Auban et al. (2001) described an experimental study of thermal plume in confined 

stratified environment, where the ventilation at a given flow rate was designed to 

maintain the height of this stratification. The experiments were performed in a square­

base tank using light fluid, fluorescent tracer and Laser Doppler. The stratified layer 

interface level and thickness were determined based on the concentration and 

fluctuations of the injected fluid. 

A simple multi-layer stratification model using a fine bubble technique was proposed by 

[Chen and Mahony (2001)]. The studied parameters were the stratification interface 

level height and ventilation flow rate using heat source distributed uniformly over a 

vertical wall. The data obtained were compared with the results of [Linden et al. 

(1990)], and good agreement was achieved. [Chen and Mahony (2001)] results showed 

the entrainment behaviour of fluid flow near the high ranges of interface level heights 

and the entrainment at the low level of each stratification layer. 
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2.6 Summary and Objectives 

In this chapter, the literature reviews of the theoretical, analytical, computational and 

experimental modelling were used as the base for the design of the experimental work 

and test matrices. It is also used to give an indication for the various parameters that 

affects the stratified flow, which are to be highlighted in details. While the analytical 

and schematic models proposed by [Skistad (1998)] and [Calay et al. (2000)] for 

selective ventilation in large enclosures are the motivation for the present experimental 

study. 

This section summarizes numbers of findings of the literature review and identifies 

research needs. There is literally a wide agreement on the importance of best 

applications for stratification control; hence the factors that impact ventilation and 

confer significant energy savings through the applications. Another issue meriting 

attention is the positive benefit of using stratified flow to maintain ventilation rates at 

design levels to reduce contaminant concentration and energy consumption, which 

indicates the urgent need for more research on these issues. 

The general characteristics of flow in ventilated areas have been reviewed. The main 

studies in ventilation and stratification areas were also covered. The studies of 

[Dagestad (1991)], [Mundt (1995)], [Skistad (1998)], [Hunt and Linden (1999)], and 

[Xing and Awbi (2002)] were outlined with the development of different applications in 

ventilation systems. Ideas have been introduced, results have been evaluated and 

conclusions have been discussed. 

Despite numerous investigations of the effect of flow parameters on ventilation systems 

and techniques, such as [Behne (1999)], [Chen and Li (2002)], [Dubovsky et al. (2001)] 

and [Holford and Hunt (2003)], there are a few investigations regarding the stratified 

flow and stratification phenomenon, [Dagestad (1991)], [Mundt (1995)], [Skistad 

(1998)] are not fully explained. Whilst the experimental investigations using salt baths 

have been popular [Linden (1979)], [Linden et al. (1990)], [Jermy and Andrew (2004)], 

the investigations using air modelling in experimental tests to date have been limited. In 

ventilation there are needs for further experimental work to understand the role of the 

stratified layer. 
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In order to provide comfort and healthy environment, it is difficult to generalize the 

stratification effects in a built environment. The conclusion offered by a review of the 

literature is that attention must be paid to maximising the advantages effects of 

stratification and minimizing the disadvantages .. 

From the literature review, stratification describes a situation of temperature or density 

gradient. In this situation, fluids of less density are lying above that of higher density. 

Stratification exists because the vertical density gradients are always positive. 

Stratification exists because the fluids of high density gradients do not mix easily. 

While the vertical density gradient is mainly determined by the vertical temperature 

gradient, stratification is determined by the degree of vertical temperature gradient. 

There is some confusion in the literature regarding the terms stratified layer interface 

level height, stratified layer thickness and the degree of stratification. More analysis and 

clean definitions would be helpful and significant research in this area is still needed. 

The degree of stratification is a measurement of flow condition. In weakly stratified 

situation, the degree of stratification is so low that the stratified situation is easily 

broken by small amount of momentum. In strongly stratified situations, the degree of 

stratification is so high that it requires a large amount of momentum to break down the 

stratified situation. 

No exact defmition or mathematical equation exists that can accurately define a degree 

of stratification for a given stratified situation. It is therefore not possible to quantify the 

stratified flow by its degree of stratification or predict the stratified flow situation by the 

estimated degree of stratification without a clear definition for the term "Degree of 

stratification". Therefore, a theoretical approach is needed to establishing an effective 

verification to determine the degree of stratification. 

In general, the literature presents three scientific procedures that are relevant to the 

stratified flow. It has covered case studies conducted through computer simulation 

(CFD), small-scale model using the salt-bath technique, and some analytical and 

experimental full-scale air modelling technique. 

As demonstrated in the literature review, it would still be extremely useful to carry out 

more experimental work using air modelling technique. 
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In summary, the key objectives involved to be studied in this work are: 

• The stratified flow parameters, such as airflow rate, flow direction and input and 

output duct locations. 

• The stratified flow characteristics, such as stratified layer interface level height, 

stratified layer thickness, temperature gradient and degree of stratification. 

• The mixing of stratified flow using both jet momentum and inversion of input 

duct locations. 
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Chapter 3 

Experimental Design and Analytical Developments 

3.1 Introduction 

Most experimental studies, such as [Linden (1979)], [Linden et al. (1990)], [Hunt and 

Linden (1999)], [Jeremy and Andrew (2004)], and others concentrated on modelling the 

ventilation flows using salt-bath techniques. The thermal properties of air are very 

different from salt solutions, especially the viscosity and molecular diffusion. The 

diffusivity of salt in water is less than that of heat in air. The salt-bath technique is not 

appropriate for modeling the ventilation flow through the full-scale test rooms or 

buildings, where all mechanisms of thermal transport coexist, [Howell and Potts 

(2002)]. Despite its high construction and operation costs, air modelling systems using 

air, instead of salt promise to provide the most accurate and reliable information. 

Sets of experiments investigating the stratification in an environmental chamber were 

conducted. The experimental set-up used to support these models is presented. The flow 

parameters such as input airflow, temperature, openings heights and other parameters 

were used to model the stratified flow patterns interactions. programming, analysis and 

discussion of the results are explained in details. 

The analytical models proposed by [Skistad (1998)] for selective ventilation in large 

enclosures is the basis for the present study. A schematic diagram of selective 

withdrawal of a polluted layer of air-"Select-vent" presented by [Skistad (1998)]. with 

the adefinition sketch of temperature profile, stratified layer interface level height h, 

stratified layer thickness (5 and stratified layer top height h' are shown in figure 3.1.1. 
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Figure 3.1.1: A schematic diagram of selective withdrawal of a polluted layer of air-"Select­

vent" presented by [Skistad (1998)J, with a definition sketch of temperature profile, stratified 

layer interface level height h, stratified layer thickness 0 and stratified layer top height h'. 

3.2 Analytical developments 

It was shown in chapter 2 that there exist no fonnal definitions for the following 

parameters: 

• Stratified layer thickness 0 

• Stratified layer interface level height h 

• Stratified layer top height h' 

• Degree of stratification DS 

These are, in most instances, undetennined characteristics that greatly influence the 

stratified layer and the prediction of stratification situation. A complete analysis of the 

stratified flow parameters and characteristics is required to provide a suitable 

determination of stratification situation. 

However, it is clear from the literature that these parameters need to be defined in a 

comprehensive manner so that it is possible to measure the parameters. 
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3.2.1 Definition of (), the stratified layer thickness 

A formal definition for the temperature profile is employed to predict the stratified flow 

in a built environment. A stratified region is a region in which mixing levels are low. It 

consists of convectively mixed homogeneous zones separated by stably stratified layer, 

in which the vertical temperature gradient is sharply increased. This sharp increase takes 

place over a finite distance called the interface or stratified layer thickness. Formal 

definition of stratified layer thickness is significant because, as well as being a good 

estimation for the stratified layer thickness, this allows us to define the relevant 

parameters h, h' and DS easily. 

To give a formal definition for stratified layer, the change in temperature gradient of the 

stratified flows is taken into account. Figure 3.2.1 show the vertical profile of air 

temperature in the environmental chamber, T(z). The function T(z) has three critical 

points: (h, T(h)), (h', T(h')) and (h+o/2, T(h+0/2)). At these points, the analytical 

definitions of stratified layer interface level height h, stratified layer interface top height 

h' and the stratified layer thickness 0 are created. 

From the temperature profile T (z) and the sign of the first derivative T'(z) = +ve along 

the vertical height, the temperature profile is always linear in the upper and lower zones. 

In between, the stratified layer is bounded by the sharp changes in temperature gradient. 

This layer is established in the region of maximum temperature gradient defined by the 

direction of the second derivative T" (z), where the temperature profile is concave 

down. From which, the neutral height of the stratified layer is defined by the vertical 

height at which. T" (z) =0. 

From this definition, the neutral height of the stratified layer IS define by the 

characteristic height at which, 

=0 
dz 2 

5 z=h+-

(3.2.1 ) 

2 

From the definition of the neutral height, the stratified layer thickness 0 is the stabilized­

layer thickness between the stratified layer interface level height h and the stratified 

layer top height h'. It is started with sharp increase in temperature profile and ended 

when the temperature profile decrease sharply. 
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() = h' - h (3.2.2) 

Equations 3.2.1 and 3.2.2 give both the height and the thickness of the stratified layer. 

The thickness of the stratified layer primarily depends on the input airflow rates and the 

geometrical dimensions of the whole space. 

Temperature profile 
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Figure 3.2.1 Temperature profile T (z), and the sign of the first derivative T' (z) and the second 

derivative T" (z) showing the line of maximum temperature gradient (z=1.2 m) where the stratified 

layer is located and the smoke is concentrated. 

3.2.2 Definition ofh, the Stratified Layer Interface Level Height 

As shown in Figure 3.2.1 , the stratified layer established in the chamber divides the 

domain into two zones (upper and lower). Each zone is having its own properties. The 

lower zone, below the stratified layer, has low temperature gradient and is close to 

mixed flow. The upper zone, above the stratified layer, is characterized by hot airflow 

producing a fairly well-mixed flow. The height of the stratified layer is h is a 

dependents of the input airflow ratio QC/Qh, and the input and output vertical heights. 

From this definition, the interface level height h is defme by the characteristic height at 

which, 
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= Maximum (3.2.3) 

3.2.3 Definition ofh, the Stratified Layer top Height 

From the establishment of zones in stratified flow, stratification will typically take place 

over a range of 0.1 ~ z/H ~ 0.9 within the chamber height, otherwise, the flow may 

stratify but without zone establishment. In which, z is the height of the temperature 

sensor (thermocouple) and H is the height of the chamber. 

As shown in Figure 3.2.1, h is the height of the lower zone whilst h' is the height of the 

upper zone. From the same definition of h, the stratified layer top height h' is define by 

the characteristic height at which, 

d
2
T M· . 
2 = Immum 

dz z=h 

(3.2.4) 

3.2.4 Definition ofDS, the Degree of Stratification 

Based on previous studies, there is no exact definition or mathematical equation that can 

accurately define a degree of stratification for a given stratified situation. To quantify 

the stratified flow situation by its degree of stratification, a scientific definition for the 

degree of stratification is needed. From temperature distribution and smoke 

visualisation, the degree of stratification depends on the temperature gradient across the 

stratified layer relative to the overall temperature gradient. In other words, the degree of 

stratification of a stratified flow is based on the temperature gradient of the stratified 

layer within the stratified region. 

From this definition the degree of stratification DS is given by: 
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dT h' ~TI .. 
across thestrallfled layer 

DS = dz h ~ 8 
dT H ~ TI overalltemperature difference 

(3.2.5) 

dz 0 H 

3.3 Experimental Apparatus 

The experimental apparatus is described in two parts: the test chamber with its heating 

and cooling systems and the instrumentations. Both the experimental apparatus and 

procedures take into account the [Skistad (1998)] model and the definitions of the 

stratified flow characteristics as defined in the previous section. 

3.3.1 Test Chamber 

All tests were conducted in the environmental chamber at the University of 

Hertfordshire that is presented in figure (3.3.1). The physical dimensions of the chamber 

were large enough so that the walls did not affect the flow, and the height was sufficient 

for the build up of the stratified layer. The dimensions of the identical rectangular 

chamber were (7.5m long, 5.6m wide and 3.0m height) with two windows (double 

glazed) isolated from an enclosed space. The walls of the test chamber were insulated. 

The walls as well as the roof were 12.5 cm thick, with white polyester outer finish and 

polyurethane foam interior made. The floor included a layer of 10 cm thick concrete, 

and below it a layer of 10 cm thick Styrofoam. 

Environmental flow variables were controlled by the means of airflow systems. The test 

chamber vent supply airflow up to 14m 3 / min of hot air, and up to 12 m 3 / min of 

cold air. The hot air supply temperature was fixed at 40 and 45·C using the chamber 

heating and cooling system as shown in figure (3.3.2). The system can supply air at 

temperatures ranging from -40·C to +50·C. The cold air supply temperature was the 

ambient temperature. It was varied according to the surroundings and weather 

fluctuations. The volume flow rate is being assumed to be the same at the inlet and 
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outlet. The walls were assumed to be adiabatic and well sealed, so that the chamber was, 

practically, insulated. The internal surfaces were painted white, so that the inside of the 

chamber is visible from the outside. The radiative heat transfer between the surfaces 

could be assumed insignificant due to the low heat conditions. 
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Figure 3.3.1 a: Definition sketch of the experimental layout and 

the thermocouDles stand. 
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Figure 3.3.1 b: Definition sketch of the environmental chamber showing a diagrammatic 

representation of the input airflow supplie , flow direction and measurin2 locations. 
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The temperature distributions for the flow inside the chamber were measured using 

eighteen K -type thermocouples. The thermocouple stand was inserted vertically on a 

multidirectional movable base located at the centre of the chamber as shown in figure 

3.3.1. The junctions of the thermocouples were located at the centres of eighteen equal 

distances on the thermocouple stand. Three thermocouples were placed at the hot inlet 

airflow, cold inlet airflow and the outlet. Another was located outside the chamber to 

measure the ambient temperature. All of these are located to give continuous monitoring 

of all required temperatures. 

Concerning the measurements, the test chamber was equipped with sensors to determine 

the air temperatures (thermocouples), as well as the input air velocities and flow rates 

(A rotating vane anemometer LC6000). A procedure was allowed by distributing the 

temperature sensors to cover the essential vertical and horizontal planes within the 

chamber. This was done by using thermocouple stand in the vertical direction, and by 

moving the base in both directions on the horizontal plane. As a result, the measurement 

points were represented at 15 cm grid in vertical plane, and 75 cm x 80 cm grid in each 

directions of investigated horizontal plane. 

, . I c st Lhdlllbcl AHIJ .. r-113 

Figure 3.3.2: Schematic diagram of the experimental set-up cooling and heating ystem. 
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The present experimental methodology showed complete descriptions for the boundary 

conditions (supply air temperature and flow rate, inside temperatures and chamber 

boundaries). Field measurements will facilitate the comparisons with the analytical and 

numerical data based on our model. The conditions were based on the assumptions that 

the walls of the test chamber were insulated, the exhaust air was leaving the room 

through the exhaust opening (negligible infiltrations through the walls) and all 

measurements were made under steady-state conditions. 

To obtain the best possible stratifying airflow, the temperature difference must be high 

enough, the entire hot airflow temperature ought to be fixed at large values (45 ·C), and 

the ambient temperature must be low. If this cannot be done, the stratification of air 

might not of get good quality at all times and points, where the air quality in the 

occupied zone will vary according to flow parameters. 

3.2.2 Instrumentation 

To get quantitative and qualitative results, the inputs of our modeling technique must 

truly represent the conditions that the model assumes it represents. The level of 

accepting the data from a measuring system is identifying by the instrument errors. 

When each measuring device is well calibrated and working properly, the measurement 

system as a whole can be providing a realistic observation, where the quality of the row 

data is a dependent of both measuring property and confounding environmental 

conditions. The instrumentation and data acquisition devices are contained within the 

instrumentation apparatus. It includes two groups of measurements, the airflow 

measurements and the temperature measurements. 

3.2.2.1 Airflow Measurements 

To determine the inputs airflow rates, air velocity measurements at the inlets were 

carried out using a rotating vane anemometer LC6000 (manufactured by Airflow, 2001, 

approved to BS EN ISO 9001). It was used to measure both cold and hot airflow rates. 

It was suitable for most applications where the air stream was large enough, and the air 

velocity was ranging from O.25-30m/s. Its resolution at 20 D C and 1013mb is better than 
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±2% for the readings from 5-30 mIs, and ±O.1m/s for the readings between 0.25-4.99 

mls as mentioned in the published manual (Appendix A3.4). To give the best readings, 

the measurements were taken using a tube of 0.11m in diameter at the entrance of the 

airflow ducts, where calculations based on airflow rates, like velocity, mass flow rate 

and heat capacity could be calculated. The inflow rate was within the resolution, of the 

device approximately, within± 5.7%, as listed in Appendix A3.4. The overall accuracy 

was a function of the overall parameters that affect the flow and the instruments used at 

certain boundaries and the experimental conditions. 

3.2.2.2 Temperature Measurements 

A total of 21 copper-constantan thermocouples (K-type) were used to measure the 

temperature distribution in the environmental chamber (figure 3.3.1). A rake of 18 

thermocouples was to measure the vertical temperature distribution at the centre of the 

chamber, while the others were to measure the temperature at the inlets and the outlet 

openings. The thermocouples were distributed vertically along the chamber height using 

metal stand. The stand was located in the centre of the chamber in order to capture the 

temperature gradients in the stratified region. Thermocouples that placed at the inlets 

and outlets were used for monitoring the inflow and outflow temperatures. All the 

thermocouples are connected to the data logger by individual channels. The signals 

received by the data logger are converted into the corresponding temperatures 

respectively. All the thermocouples have been calibrated and the calibration results are 

presented in Appendix A3.2. The thermocouples were calibrated against a platinum 

resistance thermometer. The precision of the measured temperatures (using a K-type 

thermocouple) was within 1.0 DC, as listed in the published catalogue. The calibration 

was used at ranges of 10 to 55°C which brought the estimated uncertainty of type K 

thermocouple down to ± 2.5% based on the calibration data. 

3.3.3 Data Acquisition and Logging 

The analog output signals from all of the sensors are received by a data logger (34970A 

bench link Figure 3.3.3). The data recording system used in this study has taken the data 
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from all temperature sensors at a rate of one reading per second. The data logger has 

three building blocks of 60 channels. The system can be plugged into the existing 

network to send data directly to a personal computer. Signals from all the sensors are 

analog DC voltages configured on the different output scales for each measurement. For 

each experiment large amounts of temperature data are generated. The signals sent to 

the data logger from each sensor are: 

• Input hot air temperature 

• Input cold air temperature 

• Output temperature 

• Ambient temperature 

• All eighteenth internal temperatures at the thermocouple stand. 

Figure 3.3.3 a): The bench link data 

logger 34970A. 

Figure 33.3 b): An isothermal temperature lines as 

shown on the Strip Chart Window of the bench link 

data logger software. 

The temperature measurements have been monitored and stored in the data logger 

software. When a scan is started, the instrument scans the data of the required channels. 

It stores the resulting time-stamped data in a scan record. The data logger obtains scan 

records from the instruments and logs the data into files of the computer. Each scan 

record written in the data file consists of the time and the temperature values for the 

computed channels. The temperature data was written to data files for further 
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processing. The temperature distribution was estimated by averaging the readings of 5 

successive measurements at steady state conditions. 

3.4 Measuring Procedures 

3.4.1 Theoretical Framework 

In practical experiments, the measuring methods are the ways of gathering data obtained 

correctly. It is based on both analytical background and flow observations. It is used to 

represent the flow characteristics and reaching the experimental objectives. The 

measuring methods used in this work were listed: 

1. The temperature difference in the vertical direction was measured according 

to the absolute difference between the temperatures in the top and the bottom 

of the chamber over the entire air column. 

2. The temperature distribution in the vertical direction was measured at several 

stations along the vertical column (all stations were measured at the centre of 

the chamber between the inlet and the outlet). 

3. Input airflow rates for both cold and hot airflow were measured at the duct 

entries. 

4. The readings were taken at the centre of the environmental chamber, so that 

the walls would not have any significant effect on the measurements such as 

mixing and heat transfer. 

5. The location of thermocouple stand was varied in both directions along and 

across the direction of the flow. 

3.4.2 Scanning Frequency 

There are three important keys affects scanning measurements, the start, the end and the 

interval of scanning. The default setting was to scan every minute using a 34970A 

bench link data logger shown in figure (3.3.3 a). The method used was to wait until the 

system reaches the steady state, then the required number of readings were selected. 
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During the scanning the preliminary results were observed on the Strip Chart Window 

for all channels as shown in figure (3.3.3 b). When the system reached the steady state, 

and the required measurements were obtained, scanning was stopped and the data stored 

in the Bench link software database to be analyzed and discussed. 

At stratified zones the streamlines will be diverge from one another. The distance 

between these streamlines is a result of stratification, where the temperature profiles are 

in gradient. At mixed zones the temperature streamlines will be close to one another 

because the profiles are close to vertical (less stratification). The change of jet speed 

does not impact only the shape of the profile, but also its position on the temperature 

scale. 

Before each series of tests, the facilities were setup and all instruments calibrated. The 

holes in the walls were all sealed to eliminate wall leakages as an uncontrolled variable. 

Profile measurements were made at a number of locations to study the unifonnity of the 

stratified layer in both x-direction and y-directions. The tree locations were adjusted at 

the middle of the environmental chamber as necessary, to maintain a large clearance 

from the input and the output where the momentum was too high. 

As a result, the stratification profiles presented here implies the temperature conditions 

in the chamber away from the direct influence of the supply diffusers. The temperature 

profiles shown are the average of measurements taken with the thennocouple stand at 

five time steps in the environmental chamber. 

Tests were nonnally run for a long time of 2 hours to achieve steady state. Tests were 

conducted several times to study the effect of one variable while other variables and 

conditions were held constant. Temperature values were measured every 60 seconds. 

The period of scanning (60 seconds) is sufficient to capture the temperature variations, 

where the test time is so long (2 hours) and the variations are so small. The measured 

temperature infonnation was automatically recorded to a data acquirement unit. It, 

automatically, sampled the output from all thennocouples and stored the data on a 

personal computer connected to the device. 
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3.4.3 Measuring Stations: 

1. In the middle of the environmental chamber, to measure the vertical temperature 

gradient from 0.2m to 2.8m above the floor (18 points in total). This was done to 

evaluate the stratified layer characteristics (interface level height, stratified layer 

thickness, temperature profiles and the degree of stratification). 

2. At nine locations in the flow direction (x-axis) and six locations across flow 

direction. Each station measured the vertical temperature gradient from 0.2m to 

2.8m above the floor (18 points in total). This was done to study the influenced 

length, uniformity of the stratified layer and the validity of measurements in 

stationl. 

3. At different inlet and outlet opening heights. Each station measured the vertical 

temperature gradient from 0.2m to 2.8m above the floor (18 points in total). The 

measurements were taken to evaluate the effect of these heights on stratified 

flow. It can be used to destratify the flow by supplying cold air from the top of 

the chamber and the hot air from the bottom. 

3.4.4 Creation of Stratified Flow 

Based on the previous reported analytical, numerical and experimental observations in 

chapter 2, and preliminary experiments, we predicted the following: 

• Based on "ASHRAE 62 Standard" developed by the American Society of 

Heating, Refrigerating, and Air Conditioning Engineers, the specified airflow 

rates supplied to a room within a building is (15 to 60 CFMJperson), depending 

on the activities that normally occur in that room. Using this guideline and 

assuming occupancy of (2 to 8 persons), the total typical ventilation rate would 

be in the range of(0.85 to 13.6 m3/min) 

• From the establishment of zones in stratified flow, stratification takes place at 

ranges of 0.1 :$ h :$ 0.9, otherwise, the flow may stratify but without zone 

- z 
establishment. h = - and z is the height of the temperature sensor 

H 

(thermocouple) and H is the height of the chamber. 
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• From the definition of Richardson number (Ri), which is the ratio of potential 

energy to kinetic energy, the best stratification can occur at large values of 

temperature difference ~ T and low values of momentum airflow. 

• To study the stability of the flow, the flow rate values must cover the ranges of 

Richardson numbers based on the input conditions (airflow rates and 

temperatures) ranging (from 0.08 to Max.), and indicate the stability and the 

type of the stratified flow. 

• Stratification interface level height, stratified layer thickness and stability of the 

stratified flow must be studied at full ranges of opening heights ranging (from 

0.5m to 2.0m). 

According to the above specifications, following are the design sets of experiments. The 

technique used to evaluate the stratified flow characteristics was air modelling. Four 

sets of experiments were carried out. Both cold and hot airflow rates were entered at 

different inputs and outputs heights. Cold air was entered at the bottom of the 

environmental chamber with five different values whilst the hot airflow was entered the 

top of the chamber with five different values. Both hot and cold airflow were supplied 

using rectangular diffusers of 0.5 x 0.5 m for hot air and 1.0 x 0.5 m for cold air. The 

diffusers help in admitting the flow with minimum disturbance to establish the 

stratification in the flow and maintain the stratified layer. The experimental data must 

give the indication of the stratified flow characteristics such as stratified layer interface 

level height, stratified layer thickness, degree of stratification and stability. 

The first set of experiments was to study the distribution of the thermal stratified layer 

in the whole space. This was done through the moving of thermocouple stand in both 

directions along and across the flow. Experiments were carried out for many inflow rate 

at certain inlet and outlet heights. The purposes of this set of experiment are: 

• To study the symmetry of the stratified layer in both directions along and across 

the flow direction. 

• To study the effect of walls on the stratified flow, where both heat transfer and 

disturbances were high compared with that at the centre of the chamber. 

• To study the stratified layer near the openings, where both temperature 

difference and momentum were varied. 
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• To estimate the approximate shape of the stratified regIOn to be used m 

analytical solutions. 

• To validate the measurements obtained at the centre of the chamber, where the 

stand was located. 

These purposes were supported by [Howell and Potts, (2002)]. They mentioned that 

most of the predictive techniques neglected both thermal radiation and diffusion as 

mechanisms of thermal transport. [Howell and Potts, (2002)] come to this conclusion, 

for large spaces it has an insignificant effect on the temperature stratification at steady 

state conditions. 

The second set of experiments was to study the effect of input airflow rate on stratified 

flow characteristics. Both input and exhaust heights were fixed, while the hot airflow 

rates were varied. These experiments were carried out for hot airflow rates from 1.0 -

5.0m3 /min at 45°C, and cold airflow rates from 0.0 - 8.0m3 Imin at the ambient 

temperature. The purposes of this set of experiments were: 

• To study the effect of both hot and cold airflow rates on the stratified flow 

characteristics. 

• To classify the stratified flow characteristics by the inputs airflow rates. 

The third set of experiments was to study the effect of input hot airflow height on 

stratified flow. Both cold airflow and the exhaust heights were fixed, while the hot 

airflow height was varied. This was done for four different heights 1.0, 1.5, 2.0m. The 

hot air supply was then activated to produce stratification. These experiments were 

carried out for hot airflow rates from 1.0 - 5.0m3 Imin at 45°C, and cold airflow rates 

from 0.0 - 8.0 m3 I min at the ambient temperature. The purposes of this set of 

experiments were: 

• To study the effect of input height on the stratified flow characteristics. 

• To study the effect of both hot and cold airflow rates on the stratified flow 

characteristics in the presence of various input heights .. 

The fourth set of experiments was to study the effect of exhaust height on stratified 

flow. It was similar to the third set, except that both hot and the cold airflow heights 

were fixed at certain heights, while the exhaust height was varied for five different 
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heights 0.5, 1.0, 1.5, 2.0, and 2.5 m. The hot air temperature for this case is 45°C and 

the experiments were carried out for hot airflow rates of 1.0 to 5.0 m3 I min. The cold 

inflow temperature for this case was the ambient and the experiments were carried out 

for cold airflow rates of 0.0 to 8.0 m3 I min. The purposes of this set of experiments 

were: 

• To study the effect of exhaust height on the stratified flow characteristics and 

contaminant removal. 

• To study the effect of both hot and cold airflow rates on the stratified flow at 

various exhaust heights. 

• To evaluate the best exhaust height be used in ventilation applications. 

3.4.5 Mixing of Stratified Flow 

In the first part of this work, laboratory experiments were done to investigate the effect 

of jet flow on the stratified flow characteristics. The experiments were performed in the 

same setup described in the previous section 3.3. The new experiments were presented 

using both cold and warm air jet flow. The jet of O.llm diameter was used to inject air 

vertically downward to destroy the stratified layer or flow through it. The injected 

momentum was increased gradually by increasing the jet speeds from (0.0 - 15.0m/s). 

The injected air has an efficient momentum to disturb the surrounding air, and hence the 

temperature distribution in the environmental chamber. With combined effects of 

buoyancy and momentum, the degree of stratification and the flow characteristics are 

being a complement of both the buoyancy and the momentum of injected flow. The 

experiments were done over various degree of stratification (weak, intermediate and 

strong stratification). During the experiments the position of the interface and the 

motion through the layers were monitored visually. 

The jet is located at the center of the chamber to minimize the effect of sidewalls on the 

determination of the amount of entrainment. A separate rotational fan was used to 

supply the jet with both hot and cold airflow. The 0.11 m diameter nozzle was directed 

vertically, and supplies the air with an adjustable flow rate. It is possible to go from the 

stratified case to the mixed case by changing jet airflow rate, thus changing the relative 
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magnitudes of the buoyancy and momentum fluxes. The thermocouples were vertically 

distributed on the stand. The stand was located in the middle of the chamber in order to 

capture the temperature gradients in the stratified region. A data logger was interfaced 

to a personal computer to collect the flow of temperature signals arriving from the test 

chamber. Pictures were recorded onto a videotape and simultaneously to computer hard 

disk. 

To study the behavior of the stratified flow characteristics under the effect of jet 

momentum airflow, wide temperature and smoke visualisation images were taken 

besides the quantitative and qualitative measurements for both stratified and mixed 

flow. 

The experiments were performed according to the following procedure: 

When a steady state is reached and a stratified layer is established between the upper 

and the clear lower zones, the source of momentum (the jet) located at the center of the 

chamber is turned on. Whiles the injected air is increased, the stratified layer starts to 

translate up or downward depends on the initial situation of stratification and the 

amount of momentum. The experiments are done for both cold and warm jet flow 

according to the test matrix showing in table (3.4.1). 

Jet Type Qhot (m 3 I min) Q cold (m 3 / min) 

Cold Jet 1.0 2.0 4.0 6.0 

= 2.0 2.0 4.0 6.0 

- 3.0 2.0 4.0 6.0 

Warm Jet 1.0 2.0 4.0 6.0 

= 2.0 2.0 4.0 6.0 

= 3.0 2.0 4.0 6.0 

Table 3.4.1: Details of experimental tests used to mix the stratified layer of 

hot and cold airflow rates listed in the table with a resolution of ±S.7%. For 

each test, the jet speed was increased gradually from (0.0 - 15.0 m/s). 

For the sequence of jet experiments, the only parameter was changed from one run to 

the next was the flow rate, whilst during the run the jet speed was changed gradually in 
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the ranges from 0.0 to 15 m/s. The thermocouple readings were taken every 10 seconds. 

The criterion used to reach a steady state condition was based on 0.2 °C variations. 

A last set of experiments is done to study the stratified flow characteristics and the 

usage of the inversion technique to destroy the stratified layer and mix the flow. It is 

used to investigate the mixing process that takes place inside the environmental 

chamber and the growth of the mixed layers. This can be done by the inversion of input 

airflow suppliers. In this case, the buoyant cold layer in the lower zone will loose its 

buoyancy forces while being heated with the hot airflow penetrated at lower levels in 

the environmental chamber. 

The temperature and smoke visualisation is carried out. Two cases of relatively strong 

stratification are studied using the experimental set-up presented in this chapter. The 

purpose of this technique is to remove the polluted and hot gases from the occupied 

zone and to mix the air to a reasonably uniform temperature, yet satisfying the 

requirements of comfort. This type of experiment must be done after complete 

stratification to investigate the effect of inversion of air suppliers on the stratified flow. 

The experiments were carried out for 2 to 6 m3 I min cold airflow rates and 1 to 

3 m 3 I min hot airflow rates. 

3.5 Smoke Visualization 

Smoke visualisation was used as an easy method to display the results in simple form 

being to the human observer. Smoke, as a form of pollutant source was presented by 

introducing the smoke into the environmental chamber using smoke generator unit 

photographed in figure (3.5.1). Photographic flow visualisation records were also 

prepared using digital camera with default shutter speed. A series of visualisation tests 

were conducted using the smoking unit. The tests were to study the stratification flow 

characteristics such as thickness, interface level height, and degree of stratification. 

The maximum heater voltage of the unit is limited by 25 volts, while the oil flow rate is 

adjusted by 10 steps. The oil flow rate and heater voltage were adjusted to suit 

prevailing conditions as necessary. The smoke device produces a non-toxic, non­

corrosive, dense white smoke suitable for observation and photography. Oil was heated 
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inside the smoke machine. An electrical resistance heated the oil to introduce a vapor of 

small visible particles. As there is no entraining gas, the smoke exit velocity is due only 

to effects of thermal expansion. 

The recommended oil is Shell "Ondina EL" or its exact equivalent. It is medicinal 

quality white oil approved for use in environmental applications. The thermal and 

chemical specifications of the oil are listed below (See Appendix A3.3): 

Specific Gravity 

Viscosity 

Flash Point 

Auto-ignition Temp 

Com bustibility 

Extinguishing Media 

0.86 at 20 ·C. 

14.3 centistokes at 40 ·C 

159 ·C 

Above 250·C 

as for hydrocarbons with this flash point 

C02, dry chemical powder or foam 

The smoke was initiated with high momentum and exhibited turbulent mixing. It mixed 

with the air through the lower zone at the centre of the environmental chamber. On 

reaching the interface level height, the smoke started to spread out steadily along the 

interface in the stratified region, where it was seen easily in this case. 

Figure (3.5.2) shows a real view of stratified flow. During the experiments, the smoke 

was seen ascending and coming to rest in a stratified region to form a layer of certain 

thickness. This thickness was dependent on flow parameters. After that the smoke was 

evacuated through the exhaust opening. 
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Figure 3.5.1: A photograph of smoking machine used to penetrate smoke for visualisation. 

Figure 3.5.2: A video-recorded picture of stratified flow induced by smoke rise in the 

environmental chamber at steady state conditions. 
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Chapter 4 

Effect of Ventilation Aperture Location and Inflow 

outflow Rate on the Stratified Flow 

4.1 Introduction 

4.1.1 Experimental Conditions (Test Matrix) 

It was necessary to plan several scenarios of tests that cover a wide range of flow rates, 

at different input and output heights. The test sequences for the experiments are shown 

in Tables 4.1.1, 4.1.2 and 4.1.3. These test matrices were designed to take optimum 

advantages of the stratified flow conditions. The airflow rates are based on "ASHRAE 

62 Standard", where the specified airflow rates supplied to a room within a building is 

(15 to 60 ft3/miniperson), depending on the activities that normally occur in that room. 

U sing this guideline and assuming occupancy of (2 to 8 persons), the total typical 

ventilation rate would be in the range of (0.85 to 13.6 m3/min). 

Measuring locations along the direction of the flow (X-axis) in m 

0.75 1 1.50 I 2.25 I 3.00 I 3.75 I 4.50 I 5.2S I 6.00 I 6.7S 

Measuring locations across the direction of the flow (Y-axis) in m 
0.80 I 1.60 I 2.40 I 3.20 I 4.00 I 4.80 

Table 4.1.1: Details of experimental trials for fifteen experimental tests included the studied 

locations: nine locations were along the direction of the flow, and six locations were across the 

direction of the flow. 
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Hexilm) Hbot(m) Qbot(m
3 

fmin) Q told (m 3 / min) 

1.5 2.0 1.0 0.0 2.0 4.0 6.0 8.0 

= = 2.0 0.0 2.0 4.0 6.0 8.0 

= = 3.0 0.0 2.0 4.0 6.0 8.0 

= = 4.0 0.0 2.0 4.0 6.0 8.0 

= = 5.0 0.0 2.0 4.0 6.0 8.0 

= 1.5 1.0 0.0 2.0 4.0 6.0 8.0 

= = 2.0 0.0 2.0 4.0 6.0 8.0 

= = 3.0 0.0 2.0 4.0 6.0 8.0 

= = 4.0 0.0 2.0 4.0 6.0 8.0 

= = 5.0 0.0 2.0 4.0 6.0 8.0 

= 1.0 1.0 0.0 2.0 4.0 6.0 8.0 

= = 2.0 0.0 2.0 4.0 6.0 8.0 

= = 3.0 0.0 2.0 4.0 6.0 8.0 

= = 4.0 0.0 2.0 4.0 6.0 8.0 

= = 5.0 0.0 2.0 4.0 6.0 8.0 

Table 4.1.2: Details of experimental trials for a number of experimental tests included the studied 

flow parameters in the environmental chamber, and the runs in which the release mechanisms and 

measurement setup were tested. The tests were for variable input heights. The measurements of air 

flow rate are within a resolution of ±5. 7%. 

To analyse the data, ranges of input output airflow rates are classified into three levels. 

Table 4.1.4 shows the ranges of hot and cold airflow rates related to the level of flow 

(low, moderate and high). The calculations were based on, hot air diffuser area of 0.25 

m2 and cold air diffuser area of 0.50 m2
• 
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HhO,(m) HeXII(m) Qho,(ml/min) Q cold (m l / min) 

2.0 2.S 1.0 0.0 2.0 4.0 6.0 8.0 

= = 2.0 0.0 2.0 4.0 6.0 8.0 

= = 3.0 0.0 2.0 4.0 6.0 8.0 

= = 4.0 0.0 2.0 4.0 6.0 8.0 

= = S.O 0.0 2.0 4.0 6.0 8.0 

= 2.0 1.0 0.0 2.0 4.0 6.0 8.0 

= = 2.0 0.0 2.0 4.0 6.0 8.0 

= = 3.0 0.0 2.0 4.0 6.0 8.0 

= = 4.0 0.0 2.0 4.0 6.0 8.0 

= = S.O 0.0 2.0 4.0 6.0 8.0 

= I.S 1.0 0.0 2.0 4.0 6.0 8.0 

= = 2.0 0.0 2.0 4.0 6.0 8.0 

= = 3.0 0.0 2.0 4.0 6.0 8.0 

= = 4.0 0.0 2.0 4.0 6.0 8.0 

= = 5.0 0.0 2.0 4.0 6.0 8.0 

= 1.0 1.0 0.0 2.0 4.0 6.0 8.0 

= = 2.0 0.0 2.0 4.0 6.0 8.0 

= = 3.0 0.0 2.0 4.0 6.0 8.0 

= = 4.0 0.0 2.0 4.0 6.0 8.0 

= = S.O 0.0 2.0 4.0 6.0 8.0 

Table 4.1.3: Details of experimental trials for a number of experimental tests included the studied 

flow parameters in the chamber, and the runs in which the release mechanisms and measurement 

setup were tested. The tests were for variable exhaust heights. The measurements of air flow rate 

are within a resolution 0(:S.7%. 

Type of flow\Class of flow Low Moderate High 

Cold airflow rate, m3/min 0.0,2.0 4.0,6.0 8.0,10.0 

Hot airflow rate, ml/min 0.0, 1.0 2.0,3.0 4.0, S.O 

Table 4.1.4: shows the ranges of hot and cold airflow rates tbat be classified into three classis low, 

moderate and high. The calculations were based on, hot air diffuser area of 0.25 m1 and cold air 

diffuser area of O.SO mI. The measurements of air flow rate are within a resolution of :5.7%. 
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4.1.2 Preliminary Experiments 

A number of preliminary experiments were carried out to test the experimental set-up. 

The first round of results allowed us to approximate the flow parameters that influence 

the stratified flow and the experimental set up. It provides an additional recalibration to 

reduce the errors that may occur during the experiments. 

Figures 4.1.1 to 4.1.3 display a number of representative data. Figure 4.1.1 shows 

steady state results of temperature distribution at the thermocouple stand with different 

values of cold airflow rates Q c = 0, 2, 4, 6, 8 m 3 / min and fixed moderate hot air flow 

rate 3 m 3 / min . The results give an indication of the stratified flow characteristics such 

as stratified layer interface level height, stratified layer thickness and degree of 

stratification defined by h, 8 and DS respectively. 

Figure 4.1.2 shows the results of vertical temperature profile in dimensionless form with 

the dimensionless height at moderate hot air flow rate 2 m3 I min, and moderate cold 

airflow rate 4.0m 3 I min. The results are for steady state conditions ( dT/ dt ~ 0) and 

higher degree of stratification DS= 4.0. The phenomenon of stratification and the 

stratified flow characteristics are observed clearly. 

Qh=3.0 m 3/min, Qc=O.O, 2.0, 4.0, 6.0, and 8.0 m 3/min 

50.0 ,-----------------------------------------------------, 

P 45.0 !!' 

~ ::;, 40.0 - : 
E 8. 35.0 
E 
~ 30.0 

25.0 -'--------.,----,.----,------r-------r------,------i 

0.0 2.0 4.0 Qc 6.0 8.0 

Figure 4.1.1: Temperature distribution across the chamber at a fixed axial location of (3.75, 2.8) m 

of (Qh = 3.0 m3 / min) for different cold flow rates (Q c = 0, 2, 4, 6, 8 m 3 / min) at fixed input 

and output heights of (2.0 and 1.5) m in the environmental chamber. 

66 



-.... 
'":" 

N 

I-
:::::::--.... 
'":" 
I--

1.00 

0.80 

0.60 

0.40 

0.20 

0.00 

X=3.75 m, Y=2.8 m, Hh=2.0 m, Hex=1.5 m,Qh=2.0 m3/min, 
Qc=4.0 m3/min 

0.00 0.20 0.40 0.60 0.80 

z/H 

1.00 

Figure 4.1.2: Dimensionless temperature profile along vertical centreline with dimensionless height 

across the chamber at a fixed axial location of (3.75, 2.8) m, (Qb = 2.0 m3 / min) and 

(Q. = 4.0 m3 
/ min) for different temperature readings of 1 min time step. 

The results shown in Figure 4.1.3 are the vertical temperature profile in dimensionless 

form with dimensionless height for different values of cold airflow rates. The 

preliminary analysis shows the effect of increase in cold airflow rate on the stratified 

flow characteristics. It increases the stratified layer interface level height (h) and the 

degree of stratification until it reaches the peak value of DS=4.0 at Q c = 4.0 m 3 / min, it 

decreases the stratified layer thickness 
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Figure 4.1.3: Dimensionless temperature profile along vertical centreline with dimensionless height 

across the chamber at a fixed axial location of (3.75, 2.8) m and fixed hot air flow rate 

(Q h = 2.0m 3 / min ) for different cold flow rates (Q c = 0, 2,4,6,8 m 3 / min) in the 

environmental chamber. 

4.2 Smoke Visualisation 

The distribution of contaminants ill workrooms is dependent on both clean-air 

volumetric flow rates and the characteristics of the contaminants, [Raisanen and 

Niemela (1997)]. Contaminants in the environmental chamber are introduced as a 

smoke in the lower zone. The smoke rises until it reaches the stratified layer interface 

level height h. Then it starts to spread horizontally at the level of this height. A digital 

camera was used to take pictures of the smoke flow visualisation under steady state 

conditions. The flow visualisation photographs displayed in Figures 4.2.2 to 4.2.8 

correspond to the experimental test matrix (i.e. tables 4.1.1 to 4.1.3). The figures show 

the results in a clear and simple form. 

Figure 4.2.1 shows the variations of isothermal temperature lines with time for input 

airflow height H h = 2.0 m , exhaust height H ex! = 1.5 m , hot airflow rate Qh = 2.0m3 
/ min 

and cold airflow rate Qc = 8.0m3 
/ min at steady state conditions as obtained from 

thermocouple readings (dT/ dt ~ 0 ). For this test case, Figure 4.2.2 shows the same 

results. The figure visualises the stratified layer thickness 8 and interface level height h. 
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The smoke visualisation shows the location of the stratified layer, and at a Ri =27 

anddT/dz = 3.25 °C/m, it confinns that there are stable conditions as the smoke does 

not move. 

Comparison between these Figures 4.2.1 and 4.2.2 shows the agreement between these 

different techniques, the validity of the experimental results, and the validity of smoke 

visualisation to investigate the stratified flow characteristics. Analysing stratified flow 

using temperature profiles or smoke flow gives the same results in tenns of 0, h 

and dT / dz, the advantages of smoke visualisation are listed below: 

• Gives an approximate shape for the stratified layer in the whole space. 

• Gives the indications for the stratified flow characteristics at all points In 

chamber while the temperature isothennal lines give these indications at the 

stand location. 

• Could be used to indicate the type and velocity of the flow, the diffusion 

between the zones, the particles movement and so the convection through the 

stratified layer. 

While the temperature gradientdT/dz is always positive and reaches its maximum 

values across the stratified layer boundaries, the concentration of smoke should be in 

the stratified layer. It is in agreement with [Mundt (1995)] who conducted both 

temperature and contaminant profiles in ventilated room, where the results showed that 

the contaminants has been concentrated somewhere in the middle of the room, where 

the source of heat was located and the higher temperature gradient was evaluated. 

Figures, 4.2.3 to 4.2.6 show smoke visualisation for two values of hot airflow rates 

Q h = 1 and 2 m 3 / min and four different values of cold alr flow rates 

Qc = 2, 4, 6 and 8 m3 
/ min. The smoke concentration gives an indication of the effect of 

cold airflow rates with increasing h, 0 and dT / dz. The flow streamlines of penetrated 

smoke in lower and upper zones give an indication to the momentum forces and the 

amount of mixing in each zone. 
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Figure 4.2.1: The temperature lines, at the 18th Figure 4.2.2: A video-recorded picture 

thermocouples stand, for Q
h 

=2.0m3 fmin showing stratification induced by smoke 

and Q. = 8.0 m3 fmin, DS = 6.7. 
visualization, for Qh = 2.0 m3 fmin and 

Qc = 8.0 m3 fmin, DS = 6.7. 

From smoke visualisation shown in the Figures 4.2.3 and 4.2.4, it is seen that increasing 

the cold airflow rates (from Q, =2 m3 /min to Qc = 4 m3 I min at fixed low hot airflow rate 

(Q h = 1 m 3 I min) leads to an increase of 8, due to contrary changes in momentum and 

buoyancy forces. The overall Ri changes from 200 to 75 and the Re changes from 7000 

to 14000. Comparison between Figures 4.2.3 and 4.2.4 shows that the stratified layer 

across the direction of the flow (Figure 4.2.3) is more uniform compare to the stratified 

layer along the direction of the flow (Figure 4.2.4), where the momentum fluxes is 

higher(Re=14000) and buoyancy fluxes is lower (Ri=75) . 

Figures 4.2.3 shows a visible jet flow above the source of smoke, which is due to the 

vertical momentum of smoke flow issuing from the smoking machine. This jet causes 

an entrainment of buoyant smoke above the stratified layer. Locally, this causes an 

increase in the smoke layer thickness due to relatively high density of smoke above the 

interface 

From smoke visualisation shown in Figures 4.2.5 and 4.2.6, increasing the cold airflow 

rate from intermediate to comparatively higher values (6.0 to 8 m 3 I min) at fixed hot 

airflow rate of (Qh = 2 m3 I min) leads to decrease the smoke concentration, and the 
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smoke layer thickness, due to the increase in momentum (the overall Re increases from 

19000 to 24000). 

Figure 4.2.3: A video-recorded picture showing stratification induced by smoke visualization, 

across the direction of the flow for Hh = 2.0 m, H = 1.5 m, 
exl 

Q = 2.0 m3 fmin, Ri - 200, Re -7000 and AT= 4.8 0C). 

Figure 4.2.4: A video-recorded picture showing stratification induced by smoke visualization, 

along the direction of the flow for Hh = 2.0 m, H = 1.5 m, {"\ = 1.0 m3 fmin and 
ext '4t 

Qc = 4.0 m3 fmin, Ri - 75 , Re - 14000, and AT= 6.68 °C. 
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Figure 4.2.5: A video-recorded picture showing stratification induced by smoke visualization, 

for Hh = 2.0 m, Hext = 1.5m , ~ = 2.0 m3 I miD and Q, = 6.0 m3 1m in, at steady state conditions, Ri -

133 , Re - 19000, A T= 11.9 °C, DS=3.4. 

Figure 4.2.6 A video-recorded picture showing stratification induced by smoke visualization, 

for Hh = 2.0m , Hext = 1.5m , Qh = 2.0 m3 ImiD and Q
c 
= 8.0 m3 Imin, at steady state conditions, Ri -

27 , Re - 24000 and AT= 9.76 °C, DS=3.27. 
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Figures 4.2.3 to 4.2.6 gives an indication of the combined effect of increasing hot and 

cold airflow rates (Qh = 1 to 2 m3 / min) and (Qc = 2 to 8 m3 / min). 

• The smoke visualisation in Figures 4.2.3 and 4.2.5 show an increase in the 

smoke layer thickness, it confIrms the increase in the stratifIed layer thickness 0 

as the smoke layer thickness is increased. As discussed earlier, it is due to the 

decrease of buoyancy to momentum ratio (Ri/Re) despite the increase in 

temperature difference ~ T, where the flow is changed from relatively low to 

relatively moderate airflow. The comparative momentum fluxes are higher 

(Re= 19000) and buoyancy fluxes are lower (Ri= 133). 

• At the same manner, from the smoke visualisation shown in Figures 4.2.4 and 

4.2.6, the increase in both input airflow rates (hot and cold) decreases the degree 

of stratification and increases smoke layer thickness. It is due to the decrease in 

buoyancy to momentum ratio Ri/ Re despite the increase in ~ T, where the flow 

is translated from relatively moderate to relatively high airflow. 

Figures 4.2.3 to 4.2.6 represent video-recorded pictures for different tests conditions. 

The video-recorded pictures display the results in simple form. The results demonstrate 

[Skistad (1998)] suggestion, where the relatively small amount of smoke has a very 

large effect on the results. 

Figure 4.2.7: A video-recorded picture for Figure 4.2.8: A video-recorded picture for the 

the upper zone of stratified flow induced by lower zone stratified flow induced by smoke 

smoke rise at steady state conditions. rise at steady state conditions. 
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From Figures 4.2.7 and 4.2.8, the stratified region is classified by three zones, with 

respect to smoke visualisation. 

• Above the stratified layer there is a smoke free zone. If the source of smoke is 

close to the stratified layer interface or already exceeded, the smoke penetrates 

into the upper zone and go upward to reach the ceiling, as shown in Figure 

4.2.7. Despite of penetration into the upper zone the flow remains stratified. 

• A stratified layer of interface level height, stratified layer thickness and degree 

of stratification depend on the parameters affecting the flow. It can consider as a 

thermal barrier that decelerates the smoke penetration and increases both, the 

temperature in the upper zone, and the smoke concentration along the interface. 

In this case exhaust openings should be at the level of stratification where 

smoke is concentrated. 

• Below the stratified layer there is a smoke free zone. This zone is free from 

smoke hazards as shown in Figure 4.2.8. It should be taken in consideration 

especially for tunnels and buildings designs, where stratified flow is important 

in fire control and smoke management. 

At the source of smoke, as the smoke develops from ignition, oil and entrained air rise 

as a buoyant flux over the source of smoke release. During penetration of smoke, 

ambient conditions begin to affect the smoke, and relatively cool ambient air is 

entrained with the plume gases to decrease the temperature of the smoke, [Qin et al 

(2006)]. The smoke velocity of the upper part decreases due to the decrease in the 

buoyancy forces and heat losses, [Lee and Ryou (2005)]. The warm smoke would 

initially have lower density than the surrounding. It continues to rise freely until it 

becomes as cool (as dense) as the surrounding air. Once it reaches this stage of 

equilibrium at which its temperature equals that of the surrounding environment. 

In the presence of stratification, while the buoyancy and momentum forces cause the 

smoke to flow in the downstream direction, the stratification deflects the upward smoke 

motion by entrainment of ambient air. The primary variables characterizing a smoke 

penetration are the smoke characteristics and the stratification characteristics. The 

smoke characteristics like the kinematic buoyancy and momentum are comparable with 

the stratification characteristics like the strength and interface level height of the 
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stratified layer. Depending on these parameters, the smoke motion exhibited a range of 

behaviors: 

Case 1: When the stratified layer interface level height, is much less than the smoke 

penetration height. In this case, the smoke reaches the stratified layer before loosing its 

buoyancy force, so it will go through the stratified layer to stratify at the level of neutral 

buoyancy. In this case, strong stratified layer can work as a thermal barrier against the 

smoke penetration due to the higher temperature gradient in the stratified layer and the 

entrainment of hot air. While the smoke buoyancy flux above this level being negative, 

the smoke will then descend back towards the stratified layer height and to stratify 

horizontally at the level of stratification, with a bulb shape as shown in Figure 4.2.4. 

Case 2: when stratified layer interface level height is much greater than the smoke 

penetration height. In this case, the increase in the volumetric flux due to the 

entrainment of cold air will decrease the reduced gravity in order to preserve the 

conservation of buoyancy flux. Therefore the smoke will reach its neutral buoyancy 

before reaching the stratified layer, and start to stratify at a height of neutral buoyancy 

rather than the interface level height. In this case, [Lee and Ryou (2005)] considered the 

smoke interface height would be a position of a zero velocity. 

Case 3: when the smoke penetration height is at the level of stratification. In this case, 

the smoke temperature equals that of the surrounding environment (have equal 

densities), the buoyancy of the smoke is zero, and the neutral buoyancy height is at the 

level of stratification. In which, the smoke will stratify at the neutral buoyancy height 

without significant effect for the stratified layer height. 

The stratified flow can be characterized by Reynolds number Re, which represents the 

importance of the inertial forces to the viscous forces, the Grashof number Gr, which 

represents the importance of the buoyancy forces to the viscous forces and the 

Richardson number Ri which represents the importance of the buoyancy forces to the 

inertial forces. 

A series of visualisation tests using Aero-tech™ smoke machine were recorded. It 

displays the results in a clear and simple form. 
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4.3 Tests Conditions 

The study of stratified flow characteristics as a function of time and space (locations) 

with the other parameters such as airflow rate, input and output vertical locations can be 

used for ventilation purposes, where the time, height and spacing variations of the built 

environment are significant. 

4.3.1 Time Variations of Temperature 

Creation of stratified flow takes a considerable time. After the chamber heating system 

is on, one should allow sufficient time for the temperature to stabilize, particularly if the 

chamber has been at ambient temperature. Since a data logger is installed in the 

chamber, the temperature is continuously monitored. All the measurements were taken 

at steady state conditions. The time needed to reach this condition varied from 

experiment to experiment. It depends, mainly, on the weather fluctuations, measuring 

situations and flow conditions. The typical time to reach steady state in our case was 

about (2-hours). 

To display the variation of stratified flow as a function of time, Figure 4.3.1 shows the 

relations between the temperature isothermal lines and the time variations for a specific 

period of time (140 minutes). A steady (isothermal) temperature lines are shown in 

Figure 4.3.1. It shows the measuring temperatures of thermocouples on the stand as 

time advances. Figure 4.3.1 shows the changes of the typical temperature distribution 

with time. 

As can be seen in the figure, the changes in temperature are visible near the top and 

bottom of the chamber, and non visible in between. Over a period of time (90 minutes 

from 16:20 to 17:50), it can be shown that the isothermal line degradationdT jdt = Min. 

The changes were large near the ceiling and the floor due to heat transfer, heat loss to 

the ambient, thermal radiation and mixing. The observed changes are too small 

compared with the accuracy in the temperature measurements of 2.5%. From the 

observations it is seen that a steady state condition (dT j dt ~ O) is reached after 2 hours. 
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Temperature isothermal plots as time advances 
when attaining steady state conditions. Height in m 
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Figure 4.3.1: gives an isothermal temperature lines as time advances when attaining steady state conditions. 
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The variations of vertical temperature profiles for long period of time (10 hours) under 

the effect of increasing airflow rates are shown in Figure 4.3.2. The first three curves in 

Figure 4.3.2 show the initial vertical potential temperature profile, whereas the sequence 

curves illustrate the monitory reordered potential temperature profile. Figure 4.3.2 

shows all the temperature profiles from mid of the day to the mid of the night, 

successively offset by 2 °C to see how the depth of the layers varies with time. The 

temperature profiles close to the walls show small fluctuations that resulted from 

velocity disturbances and local heat transfer by the walls. While every single profile 

from this sequence is only representative of the temperature at the given time, the 

formation of the stratified flow shown in the figure was achieved through the following 

stages: 

1. Before activating airflow rate (before 12:00:46), the flow is steady and fully 

mixed, where the vertical temperature profile is always uniform (dT / dt ~ 0 

anddT/dz ~ 0 ). 

2. For the period of (12:00:46 to 14:15:46), while the hot airflow was on and the 

cold air flow was of the flow started to stratify in the upper zone dT / dz ~ 0 . In 

the lower zone the flow was fully mixed dT / dz ~ 0 , while the stratified layer 

was yet to be established. 

3. For the period of (14:15:46 to 16:00:46), a stratified layer has appeared in the 

upper zone, and started to translate downwards. The temperature profile in the 

lower zone is approximately linear i.e. dT/dz ~ 0 ·C/m. 

4. Further time step of 15 minutes at time (16:15:46), a dynamical significance 

full-scale stratified layer was formed with (h=1.0 m, 0=0.6 m 

and dT/ dO = 8 ·C 1m). Both vertical temperature profiles above and below the 

stratified layer was quite linear ( dT/ dz ~ 0 ·C 1m), with two separate 

homogeneous layers in the upper and lower zone. 

5. For the period of (16:15:46 to 18:15:46), while the cold airflow was still not 

activated, the stratified layer thickness 0 has become thicker and dilute. 

Interface level height h has reduced. The degree of stratification dT / dz is going 

down, and the temperature profile in the upper zone is quit linear 

(dT/dz~O ·C/m). 
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Figure 4.3.2: Vertical temperature profiles, each successive profile is offset by 2.0 °C and separated 

initially by a minute and lately by 15 minutes intervals. The successive profile plot was used by 

I(Lorke et al. (2004») and others. 
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6. For the period of (18:15:46 to 20:45:46), the cold airflow was activated; the 

stratified layer thickness 8 has become thinner and more concentrated. Interface 

level height h has gone up. The temperature profile in the upper and lower 

zones is quit linear (dT/dz~ 0 °e/m). 

7. Further time step of 15 minutes at time (19:15:46 to 20:15:46), a full-scale 

stratified layer was fonned with (h=1.4 m, 0=0.3 m anddT/d8=15 °e/m). Both 

vertical temperature profiles above and below the stratified layer was quite 

linear (dT/dz~O °e/m), with two separate homogeneous layers in the upper 

and lower zone. 

8. For the period of (20:45:46 to 00:00:46), while the hot airflow was increased, 

the process was continuing as in step 3 with the same loop. 

Figures 4.3.3 to 4.3.5 show steady state temperature visualisation for three different 

values of hot airflow rates (Qb = 1.0, 3.0,5.0 m3 / min), and various values of cold 

airflow rates (Qc = 0.0 - 8.0 m 3 I min ). Both hot and cold airflow rates were supplied to 

the top and bottom of the chamber respectively using rectangular cross section diffusers. 

The diffusers help in admitting the flow with minimum momentum to maintain the 

stratified layer. The data obtained gives an indication of the stratified flow 

characteristics such as, interface level height h, stratified layer thickness 0, degree of 

stratification DS and stability defined by Ri. The results show the measured vertical 

temperature distribution along with the thennocouple stand. The highest degree of 

stratification DS of ( dT / d8 = Max) occurred at low and moderate hot airflow rates, 

whilst the weakest stratification of (dT/do = Min) occurred at comparatively high hot 

airflow rates. 

The effect of increasing cold airflow rate is to: 

1. Increase the temperature difference, fj. T. 

2. Increase interface level height, h. 

3. Improves degree of stratification defined by DS 

4. Decrease the stratified layer thickness, 8. 

Figures (4.3.3 to 4.3.5) show that low cold airflow rates are insufficient to preserve a 

thermally stratified temperature distribution, especially with the presence of 
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comparatively high hot airflow rates (Qh = 4 and 5 m 3 / min). In the case of 

comparatively low hot airflow rate (Qh = 1 and 2 m 3 / min), Figure 4.3.3 show no 

significant effect due to cold airflow on the temperature of the upper zone, whilst a 

significant effect was visible in the temperature of the lower zone. However, increasing 

the cold airflow rates will increase the amount of cold air in the lower zone, which 

increase the temperature difference, and the density in the lower zone. Thus increase the 

center of mass and buoyancy forces, which thrust the hot air toward the ceiling and push 

the stratified layer interface higher. 

Figure 4.3.3 shows that at low hot airflow~ = 1.0 m3 Imin, increasing cold airflow rates 

propagate the flow to stratify at high values of cold airflow rates. In this case, the flow 

is stratified under the effect of high cooling loads rather than comparatively insufficient 

heating loads. Whereas the cold air supply is ambient air, the flow is stratified under the 

effect of ambient conditions. In other words, for stratification at low hot air supply, the 

effect of surrounding conditions and ambient external fluctuations is significant. 

The results in Figures 4.3.3 to 4.3.5 show the effect of hot airflow rates on the stratified 

flow characteristics. Increasing the hot airflow from Qh = 1.0 m3 
/ min to Q. = 5.0 m3 I min 

at fixed cold airflow will: 

1. Decrease the temperature difference, !1T. 

2. Decrease the interface level height, h. 

3. Extended the stratified layer thickness, 8 

4. Decrease the degree of stratification DS. 

5. And in the result it de stratified the flow. 

It should be due to two reasons: 

• The first reason is due to Increase In the upper zone temperature, which 

increases the heat transfer between the zones due to temperature differences. 

Therefore, it increases lower zone temperature, so decreases the buoyancy 

forces. This condition may generate downward flows that incline the upper zone 

towards the bottom of the chamber. 

• The second reason is due to increase in the velocity of air in the upper zone of 

the chamber, which increases the shearing forces through the interface. 
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Therefore, it increases mixing that promotes the flow to be destratified. Similar 

to third effect has been observed by [Linden (1979)] that mixing produced by 

the mean turbulent shears increases the thickness of the stratified layer. 

Figur 4.3.4 shows the strongest stratification of the conditions tested (dT Id8 = Max). 

The results are due to increase in bouyancy forces and temperature gradient hence Ri 

number is also increased. 

Figures 4.3.3 to 4.3.5 show the isothemal temperature lines with small fluctuations with 

time. The temperature fluctuations are visible in the stratified layer. These fluctuations 

may be related to flow parameters such as density and velocity, where these parameters 

are the key factors of buoyancy and momentum forces. These observations are in 

agreement with [Subbarao and Muralidhar (1997)]. It may be due to small disturbances 

near the measurement stand and thermocouples nodes, or small perturbations that 

described by [Turner (1973)]. [Turner (1973)] analysis showed that the flow could 

stabilize with small perturbations for all flow ofRi ~ ~ . It is also in agreement with 

[Linden et al. (1990)] that "ventilation flows are turbulent, unsteady and three-

dimensional". 
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Figure 4.3.3: Tem perature distribution across the chamber at a fixed axial location of 
(3.75,2.8) m and fixed hot air flow rate (Qh = 1.0 m3 I min ) for different cold flow rates 

(Qc = 0,2,4,6,8 mJ I min) in the chamber. 
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Figure 4.3.4: Temperature distribution across the chamber at a fixed axial location of 
(3.75,2.8) m and fixed hot air flow rate (Qh = 3.0m3 fmin) for different cold flow rates 

(Qc = 0, 2,4,6,8 m3 
/ min) in the environmental chamber. 
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Figure 4.3.5: Temperature distribution across the chamber at a fixed axial location of 
(3.75,2.8) m and fixed hot air flow rate (Qb = 5.0m3 f min) for different cold flow rates 

(Qc = 0,2,4,6,8m 3 f min) in the environmental chamber. 
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4.3.2 Spatial Variations of Temperature 

Unifonn stratified flow in the environmental chamber is an important factor in 

predicting and calculating the flow characteristics. Fifteen locations were tested, nine 

locations along the stream-wise direction (x-axis), and six locations across the stream­

wise direction (y-axis). The tests were done to estimate the approximate shape of the 

stratified layer, and to validate the choosing of the chamber centre as a reference 

location for stratified flow calculations. The schematic diagram for these locations is 

shown in Figure 4.3.6. 

The variations of temperature profile in both along and across the stream-wise direction 

have been measured. Figures (4.3.7) to (4.3.8) shows an agreement between the 

measured air temperatures in the middle of the chamber to that measured at a number of 

locations. 
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Figure 4.3.6: Definition sketch of the environmental chamber plan view showing a 

diagrammatic representation of measuring locations listed in table 4.1.1. 
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The measured transitional temperature profiles at various stream-wise locations (x = 

0.75, 1.5, 2.25, 3.0, 3.75, 4.5, 5.25, 6.0, 6.75 m) along the longitudinal line of symmetry 

are shown in Figures 4.3.7 and 4.3.8. It shows the temperature profile for a grid of 0.75 

m along the distance between the inlet airflow rate and the outlet. Figures (4.3.7: a to h) 

show comparisons of eight experimental temperature profiles at the entire locations 

along the flow direction. The data is for the case of (DS=3.4) to show the stratified layer 

distribution and the interface level height in the flow direction. The temperature profiles 

appear to be independent of the x-direction, while the flow direction does, however, 

influence the temperature difference. 

Combinations of these profiles are shown in Figure 4.3.8. The Figure shows the 

normalized temperature profiles against the normalized height in the stream-wise 

direction. The comparison is based on the measured vertical temperature distribution in 

the middle of the chamber. The results show that the vertical temperature profile 

variation in the environmental chamber is near symmetrical in the x-direction. The 

variations in the vertical values are small over the entire chamber. Whilst, near the 

inlets, the temperature difference is maximum, and the momentum of inflow is so high, 

which increase mixing in the region close to the flow sources. 
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Figure 4.3.7 (a) to (h): Dimen ionle temperature profile along vertical ccntr line with 

dimensionle height for a number of location along the direction of the now, where 

(Qh = 2.0m 3 /min )and(Q r = 6.0m 3 / min ). 
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Figure 4.3.8: Dimensionless temperature profile along vertical centreline with dimensionless height 

for a number of locations along the direction of the flow, where (Q h = 2.0m 3 / min) and 

(Q < = 6.0 m 3 / min ), with successive profile offset by 0.2 in z-direction. 

The measured transitional temperature profiles across the stream-wise direction in the 

locations of (y = 0.8, 1.6, 2.4, 3.2, 4.0, 4.8 m) across the line of symmetry are shown in 

Figures 4.3.9 and 4.3.10. Figures 4.3.9 (a) to (f) show a comparison of six temperature 

profile for a grid of 0.8 m from wall to wall across the direction of flow. The results 

show that the temperature profile in the chamber is precisely symmetrical in the y­

direction. The variations in the vertical values are insignificant at the entire locations. 

Whilst, at the walls, the temperature difference and momentum are comparatively high 

due to heat transfer and disturbances near the walls. 

Combinations of these profiles are shown in Figure 4.3.10. The Figure shows the 

temperature profiles at six measuring locations across the stream-wise direction (y­

direction). The result shows that for large-sized environmental chamber, the flow 

characteristics are uniform. 
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Comparing the results of temperature profiles across the direction of flow (Figures 4.3.9 

and 4.3.l0) with that along the direction of flow (Figures 4.3.7 and 4.3.8), shows 

insignificant variations across the flow direction compared with the variations along the 

flow direction. The degree of stratification appears almost the same. It is considered, 

possibly, due to the relatively decrease in flow temperature, and wall effect on both 

temperature and velocity. As shown in the figures, as the distance from the center 

increases, the degree of stratification lowered slightly due to the increase of heat transfer 

and wall disturbances. 
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Figure 4.3.9 (a) to (f): Dimensionless temperature profile along vertical centreline with 

dimensionless height for a number of locations across the direction of the flow for hot airflow rate 

(Q h = 2.0m 3 / min) and cold airflow rate (Q < = 6.0m 3 / min ) in the chamber. 
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Figure 4.3.10: Dimensionless temperature profile along vertical centreline with dimensionless 

height for a number of locations across the direction of the flow for hot airflow rate 

(Q h = 2.0m 3 I min) and cold airflow rate (Q, = 6.0m J I min ), with successive profile offset 

by 0.2 in z-direction. 

4.4 Effect of Input Airflow Rate 

The effect of input airflow rate on stratified flow was studied. Different values of inflow 

were tested, experimentally, along with several flow parameters inside the chamber. The 

flow rates studied were in the ranges of Qh =l.O-S.Om3 I min andQc =O.0-8.0m3 I min. 

These ranges could be useful for studying both stratified and mixed flow. It covers all 

ranges of Ri (from 0.67 to 200). 

The temperature profiles for various values of hot and cold airflow rates, at fixed input 

and output locations, are plotted in Figures 4.4.1 and 4.4.2 respectively. The results are 

in terms of the dimensionless temperature (T - T1 )j(T2 - T1) with the dimensionless 
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height z/ H, where 1; and T2 being respectively the temperatures at the bottom and the 

top of the chamber, and H is the chamber height. 

For both cases shown in Figures 4.4.1 and 4.4.2, it is observed that the temperature 

distribution is affected by the input airflow rates. While the effect of hot airflow rate on 

temperature profiles is significant (Figure 4.4.1), the effect of cold airflow rates is 

smaller (Figure 4.4.2). 

Figure 4.4.1 shows the results of various values of hot airflow Qh =1.0-5.0m3 /min at 

comparatively high cold airflow Qc = 4.0 m3 
/ min. The Figure shows that for low 

values of hot airflow C Qh = 1.0 m3 I min), the heat released is not efficient to stratify the 

flow. For high values of airflow CQ h =3.0-5.0m3 I min), the momentum is high 

enough to cause weak stratification or mixed flow, while the strongest stratification is 

found for moderate values of hot airflow (Qh =2.0m3 /min). For this case, the flow 

characteristics are h = 1.2m, 8 = 0.6m, dT/ d8 = 15 °e / m and DS=7.6. 
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Figure 4.4. t: Comparison of temperature profile along vertical centreline with the height across the 

chamber at a fixed axial location of (3.75, 2.8) m and fixed cold air flow rate (Qr = 4.0m 3 fmin) for 

different hot airflow rates (Q h = 1,2,3,4, Sm 3 f min ) in the environmental chamber. 
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Figure 4.4.2 shows the results of temperature profiles at comparatively low 

Qh =2.0m3 fmin with various values ofQ =0.0- 8.0m3 fmir. The temperature profiles 

show a visible change. For both low and moderate cold airflow rate, increasing the flow 

rate increases the temperature difference and so affect the degree of stratification DS. 

On the contrary, high levels of cold airflow rates cause a decrease in temperature 

difference and so dT / d8. In general, the results show that the profiles are more stratified 

in the interior regions (stratified region) than for exterior regions 

SO.O ,------------------------------, 

4S.0 

u 
~ 40.0 -e 
41 

E 3S.0 
41 
I-

30.0 
-+-Qc=2.0 

~Qc=6. 0 

2S.0 +----,----.,...----'==:;:====;:::====;::::::==:=::::.j 
0.0 O.S 1.0 1.S 

Height m 

2.0 2.S 3.0 

Figure 4.4.2: Comparison of temperature profile along vertical centreline with the height 

across the chamber at a fixed axial location of (3.75, 2.8) m and fixed hot air flow rate 

(Qh = 2.0m 3 Imin ) for different cold flow rates (Qc = O,2,4,6,8m 3 Imin ) in the 

environmental chamber. 

Comparison between Figures 4.4.1 and 4.4.2 shows that the effect of increasing hot 

airflow rate on the stratified flow characteristics, at fixed cold airflow rate, is more 

significant than the effect of increasing cold airflow rate at a fixed value of hot airflow 

rate. In other words, hot air flow rate has more significant effect on the stratified flow 

characteristics than that of cold airflow. 

Figure 4.4.3 (a) to (e) presents the vertical temperature gradient dT /dz with the vertical 

height. The results are displayed as a function of hot airflow rates. It can be seen that, 

the increase in the amount of hot airflow rate propagates stratification to occur at low 

values of cold airflow rate, and the interface level height h descends to attain the 
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ground. By the definition of Richardson number in equation (4.4.2) it decreases the 

stability of the flow by decreasing the Ri, and so destabilize the flow. 

Ri = g ~ (4.4.2) 

where, ~ is the volumetric expansion coefficient for air. 

Therefore, related to the present set-up, to provide good thennal stratification, the hot 

airflow has to be moderate, and the momentum must be low. This could be done when 

the hot air supply is distributed vertically over a large area. 
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Figure 4.4.3 (a) to (e): Temperature gradient dT / dz with vertical height across the chamber 

at a fixed axial location of (3.75,2.8) m and certain values of hot air flow rate for different cold 

airflow rates (Q < = 0,2,4,6,8 m l / min ) in the chamber. 
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Figure 4.4.4 (a) to (e) presents the vertical temperature gradient dT /dz with the vertical 

height for various cold airflow rates. It can be seen from the Figure, for low and 

moderate cold airflow rates, increasing of cold airflow rate will increase the interface 

level height h and dT / dz. It increases the interface level height h due to the increase in 

buoyancy forces. For high cold airflow rates (Qc = 8.Om3 
/ min), the flow starts to 

destabilize. The instability can be related to two causes: 

• Mixing due to high momentum induce a strong fluid motion that sufficient to 

mix the flow and destroy thermal stratification. 

• Increase in radiative energy absorbed by water vapor in the lower zone, as 

investigated by [Teodosiu et al. (2003)]. This could happen due to the radiative 

heat transfer between the upper zone boundaries and the water vapor in the 

lower zone. In our case, using ambient air as a cold air supply, with high relative 

humidity, can cause this effect. This cause was supported by [Mundt (1995)]. 

[Mundt (1995)] related the reason to the radiation from warmer ceiling to the 

cold floor, then the convection heat transport to the air from the floor in the 

lower zone. 

Therefore, to provide good thermal stratification, the cold airflow rate has to be 

moderate, and the momentum must be low. It is in agreement with [Hejazi and Siren 

(1997)] results that high cold airflow rates caused problems occurred in air distribution 

and control of ventilation systems. 

In conclusion, weak stratification is often due to mixing, and poor ventilation is the 

cause of many factors, which leads to poor distribution of the air in the working space, 

[Chung et al. (1997)]. 
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Figure 4.4.4 (a) to (e): Temperature gradient dT/dz with vertical height across the chamber 

at a fixed axial location of (3.75,2.8) m and certain values of cold airflow rates for different 

values of hot airflow rates (Qh = 1.0 -5.0m3 Imin). 
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The effect of input airflow rates on the stratified flow characteristics h , h' and ° are 

shown in Figure 4.4.5. Figure 4.4.5 shows the effect of increasing cold airflow rate to 

decrease both h I and 0, whiles it increase the stratified layer interface level height h. 

The figure shows the decrease of the stratified layer thickness 0, due to the momentum 

transfer from the cold airflow to the stratified layer according to the momentum 

equation, which specifies the density variations effect. The decrease is not significant at 

lower flow rates. When the cold airflow is comparatively high, there were higher 

decrease in the stratified layer thickness and height, while the interface level height 

increases. Increasing the source momentum leads to increase mixing, due to energy 

transfer, and as a result the stratified layer thickness and the stratified layer height 

decreased more rapidly than for low and moderate cold airflow rates. 

Figure 4.4.6 shows the effect of increasing hot airflow rate to decrease both the 

stratified layer top heighth ' and the stratified layer interface level height h, whiles it 

increase the stratified layer thickness 0. The Figure shows that the decrease of both h 

and h I is rapid whilst the increase of ° is small. The effect is due to the increase of 

temperature difference, heat transfer, and as a result the stratified layer is extended, 

which should therefore lead to a low degree of stratification DS. 

Stratified flow characteristics at Qh=2.0 m3 Jmin 
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Figure 4.4.5: The stratified layer interface level height, the stratified layer height and the 

stratified layer thickness with cold airflow rate for intermediate hot airflow rate. (Values on 

graph are heights in m). 
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Stratified flow characteristics at Qc=4.0 m
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Figure 4.4.6: The stratified layer interface level height h, the stratified layer height and the 

stratified layer thickness with hot airflow rate for intermediate cold airflow rate.(ln this case, 

h reaches the ground before Q h reaches the value 4.0 m 3 / min so 0, while the interface top 

height h' is still over). 

Figure 4.4.7 shows the temperature gradient across the stratified layer dT/dzlz..-+o and 

the strongest degree of stratification DS with cold airflow rates at an intennediate values 

of hot airflow rates (Q h = 2.0, 3.0 m 3 / min). The results show that the strongest degree 

of stratification DS=7.6 and 4.0 are for intennediate values of cold airflow rates 

(Qc=4.0and6.0m 3 / min) as listed in table 4.1.4. It is at an airflow ratio 

(Qc /Qh = 2), where the buoyancy and momentum forces are in balanced. Compared 

with the lower and higher cold airflow rates. For comparatively low airflow rates the 

buoyancy forces is sufficient to stabilize the flow. For comparatively high airflow rates 

the momentum is high enough to overcome the stabilizing influence of the buoyancy 

forces. 

The best results are for moderate airflow rates of sufficient buoyancy forces and low 

kinetic energy to overcome the stabilized case. There are overcoming forces between 

the buoyancy tending to stratify the interior and the momentum tending to mix it. Thus 

with a forced plume it is possible to go from the stratified case to the mixed case by 

changing the relative magnitudes of the buoyancy and momentum fluxes. [Hunt et al 

(2002)]. 
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Figure 4.4.7: The stratified layer temperature gradient dT/dz ( °Clm) and the degree of 

stratification DS in stratified flow with various values of cold airflow rates 

(Q ( = 0,2,4,6,8m 3 / min ) for intermediate values of hot airflow rates (Q b = 2,3 m 3 / min ). 

The effects of input airflow rates on the reduced gravity g' are shown in Figures 4.4.8. 

Figure 4.4.8 shows the effect of increasing cold airflow on the reduced gravity g' : 

• At low and moderate hot airflow rates, increasing cold airflow rate with 

comparatively low values shows rapid increase in g' , whiles more increase in 

cold airflow rate results in rapid decrease. 

• At comparatively high hot airflow rates, increasing cold airflow rates shows a 

small decrease in the values of g' at the full ranges of cold airflow rates. 

• The maximum value of g' is at moderate values of input airflow rates, due to 

moderate balance between buoyancy and momentum. 

Figure 4.4.8 shows the effect of increasing hot airflow rate on the reduced gravity g' . It 

shows the increase of g' with increase of hot airflow rates due to the increase in 
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temperature difference. It also shows the maximum value of g' is at comparatively low 

cold airflow rate. 
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Figure 4.4.8: Reduced gravity g' m / s 2 with various values of cold airflow rates 

(Qc = O,2,4,6,8m 3 fmin ) for hot airflow rates (Qh = 1,2,3,4m J /min ) in the 

environmental chamber. 

In summary, controlling of airflow rates can be used for controlling the degree of 

stratification and stratification interface level height to maintain on stratified layer. It is 

in agreement with the results of [Linden (1979)]. [Linden (1979)] identified the needs 

for input flow rates to remove the mixed fluid from the stratified region in order to keep 

its thickness constant. 

4.5 Effect of Vertical Inflow and Outflow Location 

4.5.1 Effect of Input Vertical Location 

Noting that, for our case, the input location was the source of heat release in the 

chamber where hot air was penetrated. This location was considered as a useful 

parameter to be investigated. Various input locations were tested, experimentally, along 

with several flow parameters inside the chamber. The locations studied were (1 .0, 1.5, 
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2.0 m). The experiments were carried out for different ranges of flow rates of both hot 

and cold air corresponding to different ranges of Ri (0.67 to 200). The temperature 

profiles for various values of cold airflow rates (Q =0.0- 8.0m3 I mir) and input locations 

(H" =20m andH" = 1.5m), at fixed exhaust location (Hw =1.5m) at hot airflow rate 

(Qh =2.0m3 I min), are plotted in Figures 4.5.1 and 4.5.2 respectively. The results were 

in terms of the dimensionless temperature (T - 1; )/(T2 - 1;) with the dimensionless 

height z/ H , where ~ and T2 being respectively the temperatures at the bottom and the 

top of the chamber, and H is the total height of the chamber. 

For both cases shown in Figures 4.5.1 and 4.5.2, it is observed that the temperature 

distribution is affected by both the input location and the cold airflow rate. While the 

effect of input location on temperature profiles is significant the effect of cold airflow 

rates is smaller, especially for input location of 1.5 m. The effect of cold airflow rate 

was much stronger for the 2.0 m input location than that of 1.5 m. 

X=3.75 m, Y=2.8 m, Hb =2.0 m, Hex=1.5 m,Qb=2.0 mJ/min, 
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Figure 4.5.1: Compari on of dimen ionle temperature profile along vertical centreline with 

dimen ionle s height acro the chamber at a fixed axial location of (3.75,2.8) m and fixed hot air 

flow rate (Q h = 2.0m J / min) for different cold flow rate (Q < = O,2,4,6,8m J / min) in the 

environmental chamber for 2.0 m input location. 
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Figure 4.5.2: Comparison of dimensionless temperature profile along vertical centreline with 

dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m and fixed hot air 

flow rate (Q h = 2.0m 3 I min) for different cold flow rates (Q < = O,2,4,6,8m 3 I min) in the 

environmental chamber for 1.5 m input location. 

Comparison between Figures 4.5.1 and 4.5.2 shows the effect of increasing input 

location of hot airflow rate from 1.5 m to 2.0 m (i.e. 30% height increase) on the 

stratified flow characteristics: 

1. It increases the stratified layer interface level height h. 

2. It increases the temperature variations in the upper zone. 

3. It reinforces the effect of cold airflow rates on the stratified flow characteristics. 

Firstly, the higher of the input location yields a higher interface level height; the effects 

were due to the height shift of hot air flow rate (~ ) that shifted the stratified layer 

upward in response to the change in the level of the supply diffuser, so the interface 

level height h. From the Figures, the increase in h was more than the height shift, which 

is due to both: the height shift (~ ) and the height difference between hot and cold 

airflow rates (~-l{) that decreases the amount of heat transfer between the zones and 

the amount of mixing and so propagates the flow to stratify. 
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Secondly, as input location 14 increases, larger circulation flows are generated in the 

upper region, whereas; minor ones are formed for low 14 . This change of flow fields 

was related to plume strength, which results in different levels of stratification, [Hee-Jin 

and Dale (2001)]. When input location is located at 1.0 m, no visible stratification level 

is observed because the hot airflow is ascended directly into the floor before it yields a 

stratified layer, where the spread of hot air beneath the low input location is dependent 

on the input location, as one would expect. Because the penetration distance is 

decreased then the small height is sufficient to prevent hot air reaching the ground. In 

this case it can also be observed that the flow is completely mixed where the penetration 

distance and the interface level height are both found to decrease with decreasing input 

location, [Abdulkarim and Yogesh (1996)]. 

Thirdly, when the vertical location of the heat source is at lower levels, a convective 

heat gain from the heat source to the lower zone is increasing. The lower zone is 

originally cold, this will increase the temperature in the lower zone leading to decrease 

it in the upper zones, so a reduction in the average temperature of the work zone will 

result, [Sinha et al.(2000)]. Thus, the cold airflow rates have a wide domain to affect the 

flow, especially in both the stratified layer and the upper zone. 

From the Figures 4.5.1 and 4.5.2, it can be seen that, when input location is reduced by 

25% (from 14 =20m to 14 = 1.5 m), the shape of temperature profile showed less 

sensitivity to the change in cold airflow rate. It also can be seen that, the decrease of 

14 affects the flow to stratify at lower height while the interface level height descends 

to attain the ground. 

It can be noted that, in the stratified layer, the temperature profiles is more mixed close 

to the upper zone than that close to the lower zone, while it is more mixed in lower zone 

than that in the upper zone. However, as the input location increases or the amount of 

cold airflow rates increases, the interface tends upwards towards the ceiling, and 

therefore extends the stratified layer thickness (). As a result, the flow becomes more 

dilute and the stratified layer more diffused. 

As a heat source supply, the results showed that the input location has a significant 

influence on the flow characteristics. Figures 4.5.2 to 4.5.4 illustrates that as the hot 

airflow rate increases, the amount of heat in the upper zone, and the interface level 
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height migrates downwards from the top of the chamber to reach the ground, even 

though the input location is increasing. It also showed that the interface level height h 

seen to increase with increase the ~ , and to decrease with increase in the hot airflow 

rate. 
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Figure 4.5.3: Comparison of dimensionless temperature profile along vertical centreline with 

dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m and fixed hot 

air flow rate (Q b = 3.0m 3 / min) for different cold flow rates (Q c = O,2,4,6,8m 3 / min) 

in the environmental chamber for 1.5 m inout location. 

The results show that higher input location offer a stable stratified flow in which the 

layer is built up and becomes strong enough to overcome mixing forces. For this case, 

increasing the hot airflow rates will increase the temperature in the upper zone, and then 

the hot air in the upper region pushes the stratified layer downward. More increase in 

flow rate will make the layer to lose its buoyancy. In this case, only one type of flow 

would be observed in whole space. It is deduced that when the source is at low location, 

a large circulation is created yielding a lower stratification level. The reverse is applied 

to the case of higher locations of the heat source where momentum based stratification 

is to form at a higher level. 

Typical temperature profiles are shown in Figures 4.5 .5 and 4.5.6 for input location of 

heights 1.0, 1.5 and 2.0 m. The flow rates were varied for these tests. The temperature 

distributions were for cases of mixing flow. The Figures show the flow was fully mixed 

for both modes of low and high airflow rates. 
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Figure 4.5.4: Comparison of dimensionless temperature profile along vertical centreline with 

dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m and fixed hot 

air flow rate (Q h ;;; 4.0m 3 / min ) for different cold flow rates 

(0 . ;;; O,2,4,6,8m 3 / min) in the environmental chamber for 1.5 m input location. 

Figure 4.5.5 show the input locations of no significant effect on the shape of 

temperature profile for constant given flow rate, whiles airflow rates has a significant 

effect on the temperature difference. At low mode of hot and cold airflow rates (l &2 

m3/min), the flow has insufficient buoyancy forces required to stratify the flow. At high 

values of hot and cold airflow rates (5&6 m3/min), the flow has a maximum momentum 

that is sufficient to break down the stratified layer and mix the flow. The comparatively 

high energy introduced by the hot air supply will increase the temperature difference 

between these modes. 

Figure 4.5.6 shows the temperature profiles for moderate airflow rates, with a 

significant effect of input locations. When the input location is increased vertically, a 

larger temperature gradient is created (compared to lower location) in the lower zone. 

The flow becomes stratified in different degrees of stratifications. Two reasons are 

suggested for this: 
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1. There is an increase in buoyancy forces to stratify the flow compared with low 

airflow rate. On the other hand, there is a decrease in momentum forces that 

break the stratified layer and mix the flow compared with the high airflow rate. 

2. As the hot airflow rate reduces, the volumetric flow rate is increased by 

entrainment of surrounding air, and a circulation flow is formed in the region 

under the input location. It is observed that when the input location is low both 

hot and cold air will mix together. This increases the temperature in the lower 

zone. When the input location is lifted further, the hot air is circulated in the 

upper region, while the cold air is circulated in the lower region yielding a 

stratified layer in between [Hee-Jin and Dale (2001)). 

From the analysis, the input location affects both the generation of stratified layer and 

the flow characteristics. Therefore, the strength and size of those circulation flows are 

main factors in characterizing the stratification level [Hee-J in and Dale (2001)]. 

45.0 1 

u 40.0 j 
~ 
~ 

~ 35.0 ... 
III 
Co 

E 
III 
I- 30.0 

Low & High airflow rate 
-+-Input height = 1.0 m 
-&-Input height = 1.5m 
-o- In ut hei ht = 2.0 m 

Low airflow rate 

25.0 +--------.--------.-------~------_,--------._------_, 

0.0 0.5 1.0 1.5 

Height (m) 

2.0 2.5 3.0 

Figure 4.5.5 Comparison of temperature profile along vertical centreline with chamber 

height at low (Qh, Qc=l, 2 m3/min) and high (Qh, Qc=5, 6 m3/min) mode of air flow rates in 

thf' f'nvironmf!ntal chamhf'r for rlifff'rf'nt innllt location". 
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Figure 4.5.6: Comparison of temperature profile along vertical centreline with chamber 

height at intermediate airflow rates (Qh, Qc= 3,4 m3/min) in the environmental chamber for 

different input locations. 

4.5.2 Effect of Output Vertical Location 

Exhaust location is another parameter that has been investigated. Compared with the 

previous results for the effect of input location, the flow characteristics are affected 

considerably by the exhaust location as seen from the results. The dimensionless 

temperature profiles for various values of hot and cold airflow rates, at fixed input 

location and large values of exhaust locations were plotted in Figures 4.5.7 to 4.5.10. 

The Figures shows that at exhaust location 2.5m, the temperature distribution is affected 

by the input airflow rates with significant values for hot airflow rates, and in smaller 

values for cold airflow rates. 

These Figures also show that the exhaust location does not alter the position of the 

interface level height. It is to be found in the location above or below the interface level 

height. Note that the exhaust location does influence the flow rate and the level of the 

interface. In order to improve the effectiveness of ventilation and to save heating energy 

costs, the exhaust location must be where "the exhaust temperature should not exceed 

the temperature in the occupied zone" [Hagstrom et al. (2000)]. 

106 



Comparisons between Figures 4.5.7 to 4.5.10 show that the flow can stratify at certain 

heights below the exhaust location depending on the flow boundary conditions. For this 

the opening geometries must be designed to overcome the phenomenon and exhausted 

the contaminants and unneeded gases with high removing efficiency. However, when 

the exhaust location is not at the stratified layer height, but at some way below or above, 

the removing efficiency becomes low. In other words, fixed exhaust location IS 

ineffective to exhaust the contaminant. The following points are also reported. 

1. If the exhaust location is below the stratified layer height. In this case, the cold 

air flows out through the exhaust opening, while the stratified interface level 

height becomes smaller. 

2. If the exhaust location is at the stratified layer position. In this case, the stratified 

flow is not established and the transition to mixing flow is observed. This was 

due to the airflows from the stratified layer through the exhaust opening. 

3. If the exhaust location is above the stratified layer. In this case, the hot air flows 

out through the exhaust opening while the stratified interface level height moves 

to reach the top of the chamber. 

It is seen that the degree of stratification DS for case 1 is considerably higher than that 

for case 3. Where a higher exhaust location will tends to higher level of stratification. 

On the other hand, a lower location may result in lower levels of stratification. For these 

three cases, the stratified interface level height will move up and down to maintain on 

the stratified layer. It could be fixed by distributing the exhaust location vertically. 

From figures 4.5.7 to 4.5.10, the exhaust location is a key factor in stratification 

phenomenon thus in ventilation process. It is important in the evaluation of the flow 

characteristics in ventilated rooms. When the exhaust location is situated in the upper 

zone, while the warm air is supplied at higher level in two zone environment, the warm, 

fresh air will spread under the ceiling due to buoyancy. It will be extracted when it 

reaches the outlet. Thus the large amount of fresh air will short circuit into the outlet, 

while small amount of fresh air will reach the occupied zone. In this case, the 

exhausting of fresh air is large and the concentration of contaminants in the lower zone 

is too high. On the contrary, when the exhaust location is situated in the lower zone or 

close to the stratified layer interface, the contaminant removal effectiveness is larger. 
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Very similar suggestion was obtained by Mundt (2001) that the source of contaminant 

must be in the upper zone to be exhausted at large effectiveness. 

The increase in hot air flow rates increases the degree of stratification dT / deS, but further 

increases in hot air flow rate produce little further increase in degree of 

stratification dT / deS. Whatever the explanation for these observations, the results of 

Figures 4.5.7 to 4.5.10 could provide a useful indication for this case. 

From the effect of input airflow rates, while the hot and cold airflow rates decline each 

other, the input and exhaust locations reinforce each other. 

Comparison between Figures 4.5.7 to 4.5.11 shows the effect of increasing exhaust 

location on the stratified flow characteristics. However, for this case: 

1. It increases the stratified layer height, due to the height shift, and decreases the 

temperature difference dT / do so DS, due to the evacuation of fresh hot air from 

the upper zone. 

2. It increases the significant effect of cold airflow rate due to the wide domain in 

the lower zone where both the mixing and the influence length will increase. 

The analysis above shows that increasing the exhaust vertical location results in an 

extended stratified region with small temperature difference. The degree of stratification 

becomes smaller and the flow will tend towards mixed conditions. It is similar to the 

results obtained by Linden et al. (1990), using filling boxes, and demonstrated when the 

output location is high, the amount of mixing was increases and the interface was 

mixed. 

Figures 4.5.7 and 4.5.11 shows how the dimensionless temperature distribution varies 

depending on exhaust locations. The figure shows that the temperature does not vary 

linearly over the chamber height and it can be divided into three zones. While the height 

of the lower zone is changing with the source location, the upper zone is fixed for a 

number of source locations. While temperature remains constant in the lower and upper 

zones, (except at 2 m case) temperature in the stratified zone changes linearly. 

In ventilation applications, stratification interface level height and ventilation airflow 

rates are the two main factors in the design of natural ventilation system [Chen and Li 

108 



(2002)]. Both input and exhaust vertical locations have a significant effect on the flow 

characteristics, and reinforce each other. In Linden's and Skistad' s models there are no 

more explanations for the effect of these parameters on the stratified flow 

characteristics. 
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Figure 4.5.7: Comparison of dimensionless temperature profile along vertical centreline 
with dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m and 
fixed hot air flow rate (Q h = 1.0m 3 / min) for different cold flow rates 

(Q < = O,2,4,6,8m J / min) in tbe environmental cbamber for 1.5 m input location. 
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Figure 4.5.8: Comparison of dimensionless temperature profile along vertical centreline 
with dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m and 
fixed hot air flow rate (Q h :;;; 2.0m 3 / min) for different cold flow rates 

(Q < = O,2,4,6,8m J / min) in the environmental chamber for 1.5 m input location. 
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Figure 4.5.9: Comparison of dimensionless temperature profile along vertical centreline 
with dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m 
and fixed hot air flow rate (Q h = 3.0m 3 / min ) for different cold flow rates 

(Q < = O,2,4,6,8m 3 / min ) in the environmental chamber for 1.5 m input location. 
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Figure 4.5.10: Comparison of dimensionless temperature profile along vertical centreline 
with dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m and 
fixed hot air flow rate (Q h = 4.0m 3 / min) for different cold flow rates 

(Q < = O,2,4,6,8m 3 / min) in the environmental chamber for 1.5 m input location. 
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Figure 4.5.11: Comparison of dimensionless temperature profile along vertical centreline 

with dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m and 

fixed hot air flow rate (Q h = 2.0m 3 I min) for different cold flow rates 

(Q < = 0,2,4,6,8m 3 I min) in the environmental chamber for 2.0 m input location. 

As presented earlier, the higher the input vertical location, the higher the interface level 

height. Different heights of input vertical locations will result in different levels of 

stratification as evaluated by [Hee-Jin and Dale (2001)]. From the experimental results 

detailed in Chapter 4, it was found that the input vertical location could control the 

stratified interface level height and mixes the flow. The penetration distance and the 

interface level height are both found to decrease with decreasing input location, 

[Abdulkarim and Y ogesh (1996)]. 

The flow characteristics of the input location were found to be affected considerably by 

the exhaust location. As discussed earlier, Skistad's model related the stratified layer 

thickness to the extract air flow rate rather than the input and exhaust height. In the 

present work we found that the exhaust vertical location does not alter the position of 

the interface level height. It could be in the locations above or below the interface level 

height. It must be controlled in order to save energy in buildings, where the designers 

have to take the advantages of thermal stratifications to ventilate the occupied zone 

rather than the whole space [Calay et al (2000)]. Consequently, the exhaust location 

must be where "the exhaust temperature should not exceed the temperature in the 
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occupied zone" [Hagstrom et al. (2000)]. On the contrary, fixed exhaust location is 

ineffective to extract the contaminant rather than the fresh air from the occupied zone. 

The results of temperature profiles and smoke visualisation are in agreement, where 

both models can give the same indications for the flow characterstics of various values 

of exhaust locations. The present investigations have shown that there are many 

important parameters that affect the stratified flow characteristics in contrast to [Skistad 

(1998)] observations and relations that related the stratified layer thickness to flow and 

geometrical parameters without considering the input and output locations. 

The input and output ducts locations are important for the air quality at the breathing 

zone. Eexhaust vents or outlets should be located across the room and at high level 

above inlets to maximize stack effect on the leeward side as high as possible in the 

building, where the vertical distance between the inlet and exhaust openings should take 

the advantages of the stack effect. 

4.5.3 Smoke Visualisation of Exhaust Locations 

smoke visualisation was also used to evaluate the stratified flow characteristics with 

variable exhaust locations. The results of temperature profiles and smoke visualisation 

show that both models can give the same indications for the flow characterstics of 

various values of exhaust locations. The results of smoke visualisation were shown in 

the Figures 4.5.12 to 4.5.15. 

In Figures 4.5.12 and 4.5.13, it is seen that when the exhaust height was comparatively 

low, the flow stratifies at comparatively lower levels, while the smoke penetrates and 

emerges in the stratified layer. There are two reasons for this: 

Firstly, when the stratified layer interface level height is low enough then the smoke 

will emerge in the stratified layer under the effect of high upward buoyant forces, where 

smoke is still warm compare with the relatively cool lower zone, cross temperature 

differences did, however, provide a source of potential energy which drive the smoke to 

rotate downward. 

Secondly, when the stratified interface level height is low, the entrainment air from the 

lower zone to the smoke plume will be at minimum, for this case, the smoke velocity 
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will be high enough to reach the maximum height at an elevation above the interface 

level height. However, if the exhaust is in the upper zone, then the velocity reaches its 

minimum value at an elevation below the exhaust location as seen in Figures 4.5.14 and 

4.5.15. 

Comparisons between Figures 4.5.12 to 4.5.15 show the effect of increasing exhaust 

height in increasing of the stratified layer interface level height. As shown in the 

Figures, the smoke concentration is very high in the stratified layer, due to the high 

temperature gradient. In the lower and upper zones, the smoke concentration is invisible 

due to circulations and the high mixing of air in these zones. 

At the source of smoke, oil and entrained air rise as a buoyant flux over the source of 

smoke release. During penetration of smoke, ambient conditions begin to affect the 

smoke. The lifted smoke would first become warmer (less dense) than the surrounding. 

It continues to rise freely until it becomes as cool (dense) as the surrounding air. Once it 

reaches this stage at which its temperature equals that of the surrounding environment it 

starts to stratify. 

In the presence of stratification, while the buoyancy and momentum forces cause the 

smoke to flow in the downstream direction, the stratification deflects the upward smoke 

motion by entrainment of ambient air. The primary variables characterizing a smoke 

penetration are the smoke characteristics and the stratification characteristics. The 

smoke characteristics like the kinematic buoyancy and momentum are comparable with 

the stratification characteristics like the strength and interface level height of the 

stratified layer. Depending on these parameters, the smoke motion exhibited a range of 

behaviors: 

Case 1: When the stratified layer interface level height, is much less than the smoke 

penetration height. In this case, the smoke reaches the stratified layer before loosing its 

buoyancy force, so it will go through the stratified layer to stratify at the level of neutral 

buoyancy. In this case, strong stratified layer can work as a thermal barrier against the 

smoke penetration due to the higher temperature gradient in the stratified layer and the 

entrainment of hot air. While the smoke buoyancy flux above this level being negative, 

the smoke will then descend back towards the stratified layer height and to stratify 

horizontally at the level of stratification, with a bulb shape as shown in Figure 4.5.13. 
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Case 2: when stratified layer interface level height is much greater than the smoke 

penetration height. In this case, the increase in the volumetric flux due to the 

entrainment of cold air will decrease the reduced gravity in order to preserve the 

conservation of buoyancy flux. Therefore the smoke will reach its neutral buoyancy 

before reaching the stratified layer, and start to stratify at a height of neutral buoyancy 

rather than the interface level height. 

Case 3: when the smoke penetration height is at the level of stratification. In this case, 

the smoke temperature equals that of the surrounding environment (have equal 

densities), the buoyancy of the smoke is zero, and the neutral buoyancy height is at the 

level of stratification. In which, the smoke will stratify at the neutral buoyancy height 

without significant effect for the stratified layer height. 

Figure 4.5.12: A video-recorded picture bowing tratification induced b 

teady state conditions, for opening vertical locations of ~ = 2.0 m, ~xt = 1.0 mand input airflow 

rates of O. = 2.0 m3 Imin and 0 _ = 6.0 m3 /min. 
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Figure 4.5.13: A video-recorded picture howing stratification induced by smoke visualization, at 

steady state conditions, for opening vertical locations of H., = 2.0 m, ~xt = 1.5 mand input airflow 

rates of Qh = 2.0 m3 fmin and Q. = 6.0 m3 fmin. 

Figure 4.5.14: A video-recorded picture howing stratification induced by moke visualization, at 

steady tate condition , for opening vertical locations of H., =2.0m , ~xt=2.0mand input airflow 

rates of Qh = 2.0 m3 fmin and Q. = 6.0 m3 fmin. 
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Figure 4.5.15: A video-recorded picture showing stratification induced by moke visualization, at 

steady state conditions, for opening vertical locations of ~ = 2.0 ro, I\xl = 2.5 roand input airflow 

rates of Qh = 2.0 m3/ min and Q. = 6.0 m3 /min. 

4.6 Summaries and Conclusion 

The distribution of the stratified flow along and across the flow direction was 

investigated. The effect of input airflow rates on the stratified flow was conducted. Both 

effects of hot and cold airflow rate variations were studied. The experiments were done 

using the recent experimental air modeling technique explained in Chapter 3. Both 

temperature and smoke vi uali ation were compared. Data was analy ed, results were 

discussed and the concluding remarks were given and discussed. 

The study has involved a number of exercises that can be used in ventilation research 

and applications. It was found that for certain ranges of input airflow rates, stratification 

could occur for all conditions. While the hot airflow rate has more significant effect on 

the stratified flow than that of cold flow rate the moderate airflow rates show better 

performance of thermal stratification with respect to thermal energy. Thus, controlling 

airflow rate may control the degree of stratification, and stratification interface location. 
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It should be noted that the stratification interface level, the total ventilation flow rate 

and the geometry of the space are, generally, the major concerns for the design of 

ventilation systems with most efficiently. The stratification level height must be above 

the occupied zone, and the ventilation flow rate within the requirements of space 

occupants. 

For large dimensional environmental chamber, the space variations have no significant 

effect on thermal stratification. Strong stratified layer stand as a thermal barrier to 

decelerate the smoke motion, which increases both the temperature in the upper zone 

and the concentration of the smoke along the surface in the occupied zone. 

The effects of both input and exhaust locations on the stratified flow characteristics 

were also investigated. When the aperture of input location is higher, the buoyancy 

forces are increased and the flow becomes more stratified. On the contrary, the decrease 

in the aperture of input location decreases the interface level height leading to a mixed 

flow in both zones. 

In terms of interface level height, while the input and exhaust locations are reinforcing 

each other, the increase in hot and cold airflow rates does not cause a corresponding 

increase in interface level height. 
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Chapter 5 

Mixing of Stratified Flow 

5.1 Introduction 

The purposes of this part of the work were to investigate the momentum required to 

break down a stratified layer in a ventilated room using an air jet. Two methods of air 

supply were used. The first method uses cold and warm jet flow. For cold jet supply, the 

temperature of injected air was the ambient. For warm ceiling jet, the temperature of 

injected air was the hot air supply. The second method was by inverting the supplier 

vertical locations. The purpose of these methods was to break or translate the stratified 

layer according to flow applications. In the first method, the momentum was increased 

gradually at a downward right angle to intersect the stratified layer despite the degree 

and the level of stratification. In the second method the flow of high buoyancy was 

supplied upward, while the flow of high momentum was supplied downward. The 

momentum required is a dependant of flow characteristics such as h, 8 DS and dT / d8 

and the flow conditions. 

Figure 5.1.1 shows a general representation for different scenarios of selective 

ventilation using ceiling jet [Calay et al (2000], where the flow characteristics can be 

controlled by adjusting the jet temperature and momentum: 

1. A high momentum ceiling jet breaks through the stratified layers; circulates the 

air in the lower zone, and produces full mixing in the occupied zone, as 

indicated in Figure 5.1.1 a. 

2. A low momentum ceiling jet increases the interface level height and ventilates 

the occupied area without destroying the stratified layer (Figure 5.1.1 b). 

3. A low momentum ceiling cold jet with insufficient momentum fluxes to break 

through the stratified layer. In this case the interface must be at higher levels 
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otherwise the injected air will stratify at certain level in the space between the 

interface level height and the ceiling, as indicated in Figure 5.1.1 c. 

4. A wanner ceiling jet ventilated the chamber with positive momentum and 

negative buoyancy (Figure 5.1.1 d). In this case, both momentum and buoyancy 

weaken each other. The momentum initiates the flow to go downward, whilst 

the buoyancy forces tend to turn the jet upwards. 

(a) largemom um (b) , . Iow mome 

~ ...--.... 
j ~ 
+- ~ 

(d) W· 

Figure 5.1.1: Typical settings of supply and exhaust locations used in selective ventilation ICalay 

et al (2000)1: a) High jet momentum, supplies air through the stratified layers and generates full 

mixing; b) low jet momentum, supplies air without destroying the stratified layer; c) low 

momentum cold jet stratifies in the upper zone; d) low warm jet provides additional temperature 

difference to improve the stratification characteristics. 

5.2 Flow Specifications and Preliminary Tests 

The breaking up of a stratified layer using both a cold and a warm vertical jet was 

studied. The momentum was introduced by injecting the air from the ceiling using a jet 

source. The source of the injected air was the ambient for a cold jet while it was the hot 
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air supply for a warm jet flow. The jet opening size was 0.11 m diameter and the 

specific momentums were in the ranges of 0.0 to 2.17 m 4 
/ s 2 (equation 5.1 ) 

M 
M · = - =Q .V. 

J P j J J 
(5.1 ) 

Figure 5.2.1 shows a geometric sketch of the environmental chamber with a 

diagrammatic representation of the input airflow supplies, exhaust, plume, and ceiling 

jet. The flow specifications (velocity, volumetric flow rate and specific momentum) are 

listed in table 5.2.1. 

Using the jet momentum, the stratified flow was mixed to a achieve uniform vertical 

temperature distribution, while the stratified layer was translated to higher levels 

depending on the momentum flux introduced by the jet and the flow conditions. Smoke 

visulisation was used to validate the experimental work and to indicate the effect of 

vertical jet flow on the stratified flow characteristics. 
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Figure 5.2.1 Definition sketch of the environmental chamber showing a diagrammatic representation 
of the input airflow supplies, exhaust, and ceiling jet. 
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Vj (m/s) Q j (m 3/min) Mdp=QjVj (m 4/s2
) 

0.000 0.000 0.000 
0.378 0.215 0.001 
0.756 0.431 0.005 
1.133 0.646 0.012 
1.511 0.862 0.022 
2.267 1.292 0.049 
3.022 1.723 0.087 
4.533 2.585 0.195 
6.044 3.446 0.347 
7.555 4.308 0.542 
9.066 5.169 0.781 
10.577 6.031 1.063 

12.088 6.893 1.389 

13.599 7.754 1.757 
15.110 8.616 2.170 

Table 5.2.1: Listed the jet speed (Vj ), volumetric flow rate (Q j) 

and specific momentum (M j ) used in the experiments. 

Figure 5.2.2 shows preliminary experimental results of mixing using both plumes and 

jets of 3.0 m / s. Both cold and hot jet flows were tested. The results are shown in 

terms of temperature visualization technique. From the preliminary results, we have 

seen that once the flow was stratified at certain level in the middle of the chamber, the 

momentum mixed the stratified layer while a new stratified layer was established in the 

domain. At mixed zones, the temperature isothermal lines were close to one another 

because the profiles become more vertical (less stratification). The change of jet speed 

impact on the shape of the profiles and its position on the temperature scale. 

Figure 5.2.2 (a) shows the effect of heat source (hot plume) on the stratified flow. The 

temperature isothermal lines illustrated the effect of hot plume on the stratified flow. It 

increases the temperature in the lower zone and stratifies at the level of stratification. 

The buoyant plume has a significant effect on the flow in the lower zone, while it has a 

small effect on the flow in the upper zone. It is in agreement with the results of [Mundt 

(1994)] that a person can attain a good air quality in the breathing zone, even if it is in a 

polluted layer, where the convective plume around the body breaks down through the 

polluted layers. 
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Figures 5.2.2 (b) and (c) show the temperature isothermal lines of both cold and hot 

(warm) jet flow. The results were for the same conditions and modes of jet flow 

(3.0 m / s ), and referring to different flow conditions. 

Figure 5.2.2 (b) shows that the effect of hot jet (40°C) was to increase the temperature 

in the lower zone, to break down the stratified layer in the middle zone and to stratify 

the flow in the upper zone. As a result a hot layer was established near the ceiling. 

Figure 5.2.2 (c) shows the effect of cold jet (ambient temperature) was to mix the flow 

in the lower zone, push the stratified interface level height upward to reach the ceiling 

with no significant effect in the upper zone. For this case, the dense incoming air will 

flow downwards into the space under the effect of both jet momentum and buoyancy. 

Comparisons between Figures 5.2.2 (a) and 5.2.2 (c) shows that the effect of hot plume 

and the cold jet injecting air downward on a stratified flow are opposed. On the 

contrary, the effect of hot jet was as a plume in the lower zone and as a cold jet in the 

upper zone with completely different effects in the middle zone (stratified layer). 

Figure 5.2.3 shows the experimental results of both cold and warm jet for the same 

boundary conditions, whilst the modes of jet flows are referred to different temperature 

distributions. Figure 5.2.3 shows the stratified flow characteristics of (h = 1.4 m, 0 = 

0.85 m and dT/do = 13 °C/m) is mixed by using both cold and warm jet flow. The 

results show the temperature profile of hot jet is always linear, the stratified layer 

thickness is diffused with dT / dz = 1.7 °C/m, while the temperature profile of cold jet 

has a significant stratified layer of (h = 2.0 m, 0 = 0.3 m and dT/do = 17 °C/m). As seen 

from the results, while the effect of warm jet is more significant on the flow 

characteristics 0 and dT I do, the cold jet has a significant effect on the stratified layer 

interface level height h, and so the height of the lower zone. 

For warm jet, the density of injected air is increased by the entrainment air from the 

surrounding. On reaching the bottom of the space, the air spreads across the bottom of 

the space; a circulation is thus set up within the space leads to a mixed the flow. 

However when the amount of mixing is greater the interface is more diffuse 
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Figure 5.2.2: Effect of mixing modes on a stratified now at (Qh = 3.0 m J / min) hot airnow rate and (Qh = 6.0 m J / min) cold airnow rate, at the centre of 

environmental chamber. a) Hot plume. b) Hot jet of 0.11 m diameter and speed of V . = 3.0 m / s, c) Cold jet of 0.11 m diameter and speed 
J 

ofV
j 

= 3.0 m / s ,(Different colours denote vertical height of temperature sensor from 0.25 to 2.8 m, as shown on thermocouple stand figure 3.3.1). 
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For relatively cold jet, the dense incoming air will flow into the space descending to the 

floor as a curved plume. For low specific momentum, the interface descends 

significantly faster because of the greatest density of the fluid above the interface. The 

large velocity (momentum) of cold jet inflow caused the entrainment of buoyant fluid 

from the lower zone to push up the interface to reach the ceiling. Once the front of 

dense air reaches the stratified layer, the stratified layer breaks down and the flow 

becomes fully mixed. 

From the preliminary tests, when the jet momentum is not large enough, or the 

temperature of air injected is greater than that of the pre-stratified layer, the injected air 

cannot reach the stratified layer. In this situation, the jet cannot activate the mixing in 

the domain and may stratify at certain levels above the floor. These levels of 

stratification depend on both the momentum and the temperature of injected air, and the 

stratified layer interface level height. The balance between momentum and buoyancy 

forces in the injected air must be adjusted. 

40.00 

38.00 

36.00 

34.00 
~ 

32.00 
~ 

~ 30.00 ... 
Q> 

c.. 28.00 
E 
Q> 

I- 26.00 

24.00 

22.00 

20.00 

0.0 0.5 1.0 1.5 

Height (m) 

2.0 

Hot Jet 

Cold Jet 

Stratified Flow 

2.5 3.0 

Figure 5.2.3: Effect of both cold and hot ceiling jet of (3.0 m/s) on a stratified flow at 

(Q h :: 3.0 m 3 / min ) hot airflow rate and (Q h = 6.0 m 3 / min ) cold airflow rate with 

a locations of2.0 and 1.5 m respectively at the centre of environmental chamber. 
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5.3. Time Variations of Temperature 

While the fonnation of stratified flow needs long period of time, the breaking down of 

the fonned layer needs less time depending on the method of destruction. Figure 5.3.1 

shows a time variations from stratified flow to mixed flow. It shows the relations 

between the temperature isothennal lines and the time variations for a specific period of 

time (115 minutes). By inversion the ducts vertical locations, the destruction of the 

stratified layer occurred within 10 minutes of time (13:22 to 13:32). 

Our extensive investigations in Chapter 4 have shown that generally two distinct 

stratified layers of air fonn, an upper zone containing wann air and a lower zone 

containing cooler air separated by a boundary stratified layer with thickness 8. The 

transfonnation from stratified flow to mixed flow takes place over a specific period of 

time depends on both mixing method and flow conditions. Figure 5.3.2 show the 

variations of vertical temperature profiles for a period of time (5 hours) under the effect 

of wann jet momentum: 

The first three curves in Figure 5.3.2 show the initial conditions of stratified temperature 

profiles with a degree of stratification value (of DS=2.4), whereas the sequential curves 

illustrate the measured temperature profiles successively offset by 2 °e. 

At beginning of transfonnation, the temperature profile is very similar to that for a 

stratified flow. As one goes forward, the temperature profiles become linear, thus 

indicating a mixed flow development. This is expected since, at the beginning of the 

transition period, the flow is nearly stratified and is fully mixed at the end of transition 

period. 

It can be seen In 5.3.2 that the degree of stratification OS changes from the near 

stratified value (of OS=2.2, at time 17:02:55) to the nearly fully mixed value (of DS=I, 

at time 23:45:05) within the transition period. 
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5.4 Mixing Flow Using Cold Jet 

Experimental results using cold jet (Le. local ambient air) of 0.11 m diameter shown in 

Figure 5.2.1 were carried out. The effect of momentum, on the mixing of stratified flow 

for a various air flow rates, was studied. The presented data reveal the effect of varying 

speeds of the cold vertical jet as illustrated in table 5.2.1 and Figure 5.2.1 on the 

stratified flow characteristics. Comparisons of fifteen experimental temperature profiles 

in entire locations will be discussed. The temperature profiles appear to be dependent of 

jet speed. 

For the analysis, the mode of flow is classified according to the stratified layer interface 

level height. Table 5.4.1 shows the classification of the flow with the airflow rate ratio 

(Qc/Qh ). 

Mode of now ~ Q .. 2.00 4.00 6.00 

High airnow ratio 1.00 2.00 4.00 6.00 

Moderate airOow ratio 2.00 1.00 2.00 3.00 

Low airnow ratio 3.00 0.67 1.33 2.00 

Table S.4.1: The ranges of air now ratios as classified to analyze mixing modes, both Q .. and Qc are 

in m3/min. 

5.4.1 Case 1: Stratified Flow for High Airflow Ratio. 

In this case, the airflow ratio is comparatively high (. QclQh =2.0, 4.0 and 6.0). The 

flow was stratified at lower hot airflow rate (Q h = 1 m 3 / min). The interface level 

height is relatively high. Figures 5.4.1 to 5.4.3 show how the momentums influence the 

stratified flow characteristics and the stratification interface level height. By increasing 

the momentum, the Figures illustrate the growth and the vertical transport of the 

stratified layer interface level height. In comparisons between the temperature profiles 

of different momentum airflows, it is seen that the mixing is higher and faster for high 

momentum. 
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As expected for weak stratification the mixing will be faster. Since the degree of 

stratification is low, the stratified layers are easily destroyed. Furthermore, the 

transformation of kinetic to potential energy has no efficient domain to yield a stratified 

layer before reaching the stratified region and flows through the stratified layer. 

As the injected air goes downward, the volumetric flow rate of the injected air is 

increased by entrainment of surrounding air in the upper zone. With more increase in 

momentum flow rate, the descending air impinges upon the ground and circulates in the 

lower zone. The circulating airflow will push the stratified layer upward to reach the 

ceiling, (Figures 5.4.1 to 5.4.3). 

From Figures 5.4.1 to 5.4.3, it is observed that more momentum air flow yields a 

stratified layer near the ceiling with different properties such as different density grades. 

The stratified layer developed near the ceiling was due to the reverse jet flow that ejects 

backward from the floor. While the strength of this stratified layer is increased by the 

momentum, the thickness is decreased. Therefore, the momentum is not only a main 

factor in mixing the flow but also a main factor in stratifying the flow and 

characterizing the stratification level, [Hee-Jin and Dale (2001)]. 

Weak stratification occurred due to the unbalance between hot and cold airflow rates. 

F or low hot airflow rates and high cold airflow rate, the flow will stratify at higher 

levels in the upper zone. In this case, the injected air will flow through the stratified 

layer to mix with the flow in the lower zone and push the stratified layer upward to 

reach the ceiling. More increase in jet air momentum will increase the mixing in the 

lower zone and increase the degree of stratification near the ceiling. 

For more detail of data analyzed in Figures 5.4.1 to 5.4.3, see Figures (Al.4.1 to 

Al.4.3) in Appendix Al. 
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Figure 5.4.1: Vertical temperature profiles for various cold jet speed of 0.11 m diameter, 

while the flow was stratified at (Q h = 1.0 m 3 I min) hot airflow rate and 

(Q < = 2.0 m 3 I min ) cold airflow rate at locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 
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Figure 5.4.2: Vertical temperature profiles for various cold jet speed of 0.11 m diameter, while the 

flow was stratified at (Q b = 1.0 m 3 I min ) hot airflow rate and (Q < = 4.0 m 3 I min ) cold 

airflow rate at locations of 2.0 and 1.5 m respectively at the centre of environmental chamber. 
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Figure 5.4.3: Vertical temperature profiles for various cold jet peed of 0.11 m diameter, while 

the flow was stratified at (Q h = 1.0 m 3 / min ) hot airflow rate and (Q < = 6.0 m l / min ) 

cold airflow rate at locations of 2.0 and 1.5 m respectively at the centre of environmental 

chamber. 

5.4.2 Case 2: Stratified Flow for Low Airflow Ratio. 

In this case, the airflow ratio is comparatively low (. QclQh =0.67, 1.33, and 2.0), the 

interface level height is at lower levels. The flow was stratified at higher hot airflow rate 

( Qh = 3 m 3 / min). The breakdown of the stratified layer occurs with three possible 

configurations: 

1. When the stratified layer interface level height was much lower (near the 

ground) as shown in Figures 5.4.4 where the flow was stratified at higher hot 

airflow rate and lower cold airflow rate (Qh = 3 m3 / min Qc = 2.0 m3 / min). In 

this case, the momentum will destroy the stratified layer and mix the flow 

sooner. It is observed that the flow temperature stream lines turned over in the 

lower zone due to the horizontal movement of injected air when impingement 

with the floor. This occurred with no significant effect for jet momentum on the 

mixing of the upper zone. 

2. When the stratified layer interface level height was above the ground with wide 

domain. The flow was stratified at higher hot airflow rate and intennediate cold 
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airflow rate (Qh = 3m3 I min Qc = 4.0 m3 I min ). The stratified layer interface 

level height h is enough for the injected air to go through and flows horizontally 

under the stratified layer, as shown in Figures 5.4.5. In this case, the injected air 

of low momentum impingement on the stratified layer leading to push it 

downward. Increasing the momentum leading to lower interface level height, 

which leading to destroy the stratified layer as well as in case 1. 

3. The flow was stratified at higher value of hot and cold airflow rate 

(Qh = 3m3 Imin Qc = 6.0 m3 Imin, as shown in Figures 5.4.6. The stratified 

layer interface level height was above the ground with certain distance that 

enough for the injected air to go through and stratify. In this case, the injected air 

through the stratified layer will mix the flow in the lower zone and push the 

stratified layer upward to reach the ceiling. Increasing the jet momentum will 

increase the stratified layer interface level height. More increasing will increase 

the mixing in the lower zone and destroy the stratified layer before reaching the 

ceiling. 

Figures (5.4.4 to 5.4.6) show that when the jet momentum is not strong enough to reach 

the ground, the stratification is formed at a lower level. On the other hand, when the 

momentum is high, a large circulation is created yielding a higher stratification level 

height. Increasing of momentum will destroy the stratified layer before reaching the 

ceiling level, where a one large mixed zone is observed in whole space. 

Comparing Figure 5.4.4 with the Figures 5.4.5 and 5.4.6, it was found that the interface 

level height was at lower levels where (Qc /Q = 0.67). As can be seen in the Figure, 

with the increase of momentum; the stratification interface level descends downward 

with rapid decrease compared with that in Figures 5.4.5 and 5.4.6. 

At low jet velocity (Vj = 0.38 to 3.0 mls), it was observed that the injected air has a 

significant effect on the temperature profile in the lower zone, while it has no significant 

effect on the temperature profile in the upper zone despite the decrease in the average 

temperature of the upper zone. This may occur due to the following: 

• While the initial velocity of injected air is low, the injected air needs more time 

to cross the distance between the jet and the stratified layer. Therefore, the heat 

transfer from the upper zone to the injected air is increased, while the injected 
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air temperature is increased. This will decrease the average temperature in 

upper zone and increase the average temperature in the lower zone. 

• While a large part of the air flows out the upper zone reaching the lower zone 

without mixing with the hot air in the upper zone. This may result in a mixed 

hot air in the upper zone and a lower stratification interface level height leading 

to lower height of working zone. 

• Also, at low momentum, the influence of the slip velocity between the injected 

air and the air in the upper zone becomes relatively significant. This may result 

in large access of injected air to the lower zone, which increases the temperature 

variations in the lower zone. 

As shown in Figures (5.4.4 to 5.4.6), by increasing the jet momentum, the thickness of 

the upper zone is increased, while the interface level height h is decreased significantly 

faster to reach the ground due to the comparatively cooled air above the interface. It is 

similar to the results of [Linden et al (1990)] that small size of opening results in high 

amount of inflow that works as a jet caused the entrainment across the interface and 

because of the greater density of the fluid above the interface, the interface descends 

faster. 

At high jet momentum, the impingement of the injected air against the ground converge 

the direction of injected air to flow horizontally. This type of horizontal flow leads to 

vertical pressure drop above and below the stratified layer may results in a lower 

interface level height, and a negative velocity gradient leading to a low value of Ri 

number and so mixed flow. 

Figures (5.4.4 to 5.4.6) show that since the jet momentum is higher, the air penetrating 

the stratified layer will reach the floor. The entrainment volume flux is large and thus 

the circulation flow velocity in the lower zone will also be large. The stratified layer 

becomes dilute, and the mixing in the lower zone becomes larger. This leads to 

destabilization of the flow. 

For more detail of data analyzed in Figures 5.4.4 to 5.4.6, see Figures (Al.4.4 to 

Al.4.6) in Appendix Al. 
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Figure 5.4.4: Vertical temperature profiles for various cold jet speed of 0.11 m diameter, 

while the flow was stratified at (Q h = 3.0 m 3 / min) hot airflow rate and 

( Q < = 2.0 m 3 / min ) cold airflow rate at locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 
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Figure 5.4.5: Vertical temperature profiles for various cold jet speed of 0.11 m diameter, 

while the flow was stratified at (Q b = 3.0 m 3 / min) hot airflow rate and 

( Q < = 4.0 m J I min ) cold airflow rate at locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 
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Figure 5.4.6: Vertical temperature profiles for various cold jet speed of 0.11 m diameter, 

while the flow was stratified at (Q h = 3.0 m 3 / min) hot airflow rate and 

(Q < = 6.0 m 3 / min ) cold airflow rate at locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 

5.4.3 Case 3: Stratified Flow at Intermediate Airflow Ratio. 

In this case, the airflow ratio is intermediate (. Qc /Qh =1.00, 2.0, 3.0), the interface 

level height is at mid height of the chamber. The flow was stratified at intermediate hot 

airflow rate ( Q h = 2 m 3 
/ min). In this case, strong stratification was occurred where the 

complement of momentum and buoyancy forces was in balance. The injected air will 

flow through the stratified layer or mix it depending on the amount of momentum. 

Increasing the momentum will pick it up toward the ceiling before it destroyed at high 

momentum and the whole space becomes fully mixed. 

Figure 5.4.7 to 5.4.9 show how the average temperatures profiles change with the 

change in momentum. In the lower zone, the temperature is increased to reach the 

average temperature of the whole space, while it decreases in the upper zone. The 

temperature of the stratified layer is a complement of both temperatures in the lower and 

upper zones. The results reveal the effect of momentum on the flow temperature 

profiles. As the jet momentum increases, the average temperature in the upper zone is 

gradually decreasing due to the entrainment volume flux, while in the occupied zone the 

increasing is more rapidly as discussed in the case 2. 
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Figures 5.4.7 to 5.4.9 show the effect of increasing jet speed on the temperature profiles. 

It illustrates the growth and the vertical transport of the stratified layer interface level 

height with increasing jet momentum. As seen in the Figures, the decrease in the 

temperature of the lower zone is initially faster due to the smaller thickness of the 

stratified layer, where the injected air can flow through without destroying the stable 

layers as presented in Figure 5.1.1 (b). With further increase in jet speed, thermal 

stratification decays and the stratified layer fades away until the temperature of the air 

becomes uniform, while the average temperature is decreasing steadily to approach the 

inlet ones. This is much similar to the results of [Hegazy and Diab (2002)] for the 

stratified flow in electrical water heaters. 

Also by increasing the airflow rates, comparisons indicated that since the momentum is 

higher, the layer becomes thicker and the mixing in the lower zone becomes larger 

As the increase in jet speed continues the interface moves upward. This is due to two 

reasons: 

Firstly, it is due to the high temperature difference through the stratified layer 

boundaries (8°C). This will increase the diffusion and radiation heat transfer to the 

lower zone, while the injected air stratify in the lower zone as a new source of cold 

airflow rate. This will increase the ratio of Qc /Q ou1 so the interface level height h (as 

evaluated in Chapter 4). 

Secondly, it is due to the circulation of flow in the lower zone, while the air in the upper 

zone is static. In this case, the difference in velocity generates a shearing force through 

the stratified layer. This will tear out the cold air to the upper zone, and increase mixing 

in the flow. This is similar to the mixing in water tank by heating process [Kang (2002)] 

Figures 5.4.7 to 5.4.9 illustrate the effect of increasing jet momentum on the stratified 

flow characteristics. It decreases the temperature difference ~ T, the temperature 

gradient dT / dz and so the degree of stratification DS . It shows the translation of the 

stratified layer interface level height h with the jet speed, while the stratified layer 

thickness 8 is decreased. 
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Figure 5.4.7: Vertical temperature profiles for various cold jet speed of 0.11 m diameter, 

while the flow was stratified at (Q h = 2.0 m 3 / min) hot airflow rate and 

(Q c = 2.0 m 3 / min ) cold airflow rate at locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 
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Figure 5.4.8: Vertical temperature profiles for various cold jet speed of 0.11 m diameter, 

while the flow wa stratified at (Q h = 2.0 m 3 / min) hot airflow rate and 

(Q , = 4.0 m J / min ) cold airflow rate at locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 
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Figure 5.4.9: Vertical temperature profiles for various cold jet speed of 0.11 m diameter, 

while the flow was stratified at (Q h = 2.0 m 3 / min) hot airflow rate and 

(Q < = 6.0 m J / min ) cold airflow rate at locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 

I 

Comparisons between these figures show no significant effect for the cold airflow rates 

on mixing. It is due to the insignificant effect of cold air flow rate on stratifying the 

flow as discussed in Chapter 4, and so on de-stratifying or mixing it. Also the mixing of 

a stratified flow is based on the stratified flow situation when the momentum jet starts to 

mix the flow rather than the initial conditions carried the flow to reach this situation. 

Figures 5.4.7 to 5.4.9 how the decrease in temperature gradient by increasing the 

momentum until it reache steep alues. Therefore, the injected air is flowing directly 

towards the bottom of the chamber, which tends to circulate the flow in the lower zone. 

Since it ha a negati e buoyant force relative to the chamber domain, the mixing of low 

momentum will e tablish above the stratified layer, pushing it downward. Increasing the 

momentum will inc rea e the depth of the injected air to flow through the stratified layer. 

It increa es the buoyant forces in the lower zone under the stratified layer to pick it up 

until it reaches a stable stratification in the upper part of the chamber. This will increase 
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the height of occupied zone whilst the hot zone becomes thin. More increase in 

momentum will overcome the stability of stratified flow to becomes fully mixed flow. 

F or the case of strong degree of stratification and low momentum, on reaching the 

interface, the injected air will flow and stratify above the stratified layer for a certain 

distance depending on the jet momentum, degree of stratification and interface level 

height. However, for low degree of stratification the injected flow will go through the 

stratified layer or destroying it, while for high degree of stratification, the stratified layer 

will stand against the injected flow of low momentum as a solid surface. 

Comparing the results of this case with those in case 1 and case 2, it can be noted that: 

• For injected cold air at high level from the ceiling, the effect of hot airflow rate 

compared with cold airflow rate was much higher. As it is expected, the injected 

air is the ambient. It is injected downwards where the domain is the hot zone 

rather cold zone. Thus, the entrainment volume flux from the upper zone is 

large, which results in the significances of the hot air flow rates. 

• The results show how the momentum influences the stratified flow of strong 

characteristics, as shown in Figures 5.4.7 to 5.4.9, with no significant influence 

on the stratification interface level height. In comparisons with the other cases, it 

is seen that the mixing is higher and faster for both weak stratification and high 

momentum. 

After it was injected, the jet air flow usually stratified at certain levels when it lost its 

momentum and negative buoyancy. Based on the level of stratification, there are three 

different flow configurations. The following is a detailed analysis of these 

configurations: 

Firstly, the flow stratifies at low values of hot airflow rates and high values of cold 

airflow rates (Qc/Qh = Max). In this case, the flow will stratify at high levels in the 

upper zone. Therefore, the injected air can flow through the interface without destroying 

the weak stable layers of competitively low Ri. It mixes the flow in the lower zone, and 

pushes the stratified layer upward to reach the ceiling. 

Secondly, the flow stratifies at high values of hot airflow rates and low values of cold 

airflow rates (Qc/Qh = Min ). In this case, the flow will stratify at levels somewhere in 
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the lower zone. On reaching the stratified layer, the injected air has no space to flow 

through the stratified layer of competitively low Ri without destroying or pushing it 

downwards to reach the ground. The behavior of the flow is a dependence of both the 

momentum and the interface level height 

Thirdly, the flow stratifies at intermediate values of both hot and cold airflow rates 

( QC/ Qh = Intermediie). This type of flow has a high Ri, where the balance between 

buoyancy forces and momentum forces are the main parameters to control the flow 

(Chapter 4). In this case, the flow will stratify near the middle of the chamber. The 

injected air will flow through the interface without destroying the stable layers. 

For more detail of data analyzed in Figures 5.4.7 to 5.4.9, see Figures (A2.4.7 to 

A2.4.9) in Appendix A2. 

5.4.4 Combined Effect of Airflow Rates and Momentum Induced by Cold 

Jet on Stratified Flow 

Effect of both hot and cold airflow rates on the stratified flow was studied and discussed 

in Chapter 4. The effect of hot airflow rates was more significant. Experiments on 

mixed flow with different airflow rates were done. In this section, the effect of both hot 

and cold airflow rates with the presence of momentum, using cold jet, is analyzed and 

discussed. 

Interface level height for various values of hot and cold airflow rates with the jet 

momentum, at fixed input and output locations, are plotted in Figures 5.4.10 to 5.4.15. 

The plotted data show that stratified layer interface level height is affected by the input 

airflow rates. While the effect of hot airflow rate on temperature profiles is significant 

(Figures 5.4.13 to 5.4.15), the effect of cold airflow rates is smaller (Figure 5.4.10 to 

5.4.12). 

Figures 5.4.10 to 5.4.12 show the effect of cold jet speed on the interface level height. 

The results are for various values of hot and cold airflow rates (Qh = 1.0, 2.0, 3.0 m3 / min 

and Q c = 2.0,4.0.6.0 m 3 / min ). The results show the effect of cold airflow rate is 

insignificant for the cases of low and intermediate hot air flow rate, where the stratified 
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layer interface level height is cooperatively high. The effect of cold airflow rate was 

significant at high hot air flow rate where the initial stratification was occurred at low 

interface level height. The results show that the effect of cold airflow rates on the 

interface level heights is more significant for high jet momentum than for low jet 

momentum. 

Figure 5.4.12 shows that, at high hot airflow rate (3.0 m3/s ) and low and moderate 

cold airflow rates (2.0 m3/s and4.0 m3/s ), the flow is fully mixed at lower 

momentum (0.5 m 4 
/ s 2 ). In this case, the interface level height h was at lower levels 

(case 2). On the contrary, the figure shows that to reach fully mixed flow with high cold 

airflow rate of ( 6.0 m 3 
/ s ), more than triple times of this momentum will be in needed 

(1.75 m4/s 2 
). 

Figures 5.4.13 and 5.4.l4 show that, the flow will be not fully mixed at hot airflow rates 

of (1.0 and 2.0 m 3 
/ S ) using low momentum jet of « 0.5 m 4/ s 2). But the stratified 

layer interface level height h goes upward to reach 80% of the chamber height at a 

momentum of (1.5 m 4 / s 2 ). With more jet momentum, the flow never be fully mixed 

for low hot airflow rate of (1.0 m 3 
/ s ), while it is fully for hot airflow rate of 

(2.0 m 3/ S ), with better results for the second case. 

Comparison between Figures 5.4.10 to 5.4.12 and Figures 5.4.13 to 5.4.15 shows that, 

the effect of increasing hot airflow rates to mix the flow using cold jet flow is more 

significant than the effect of increasing cold airflow rates, especially for the cases of 

high values of cold and hot airflows. This was due to three reasons: 

• The comparatively significant effect of hot airflow rates, as discussed in Chapter 

4, where the source of heat in our case was the hot air supply (Chapter 5). 

• The injected cold air was the ambient. Due to the temperature difference 

between the injected cold air and the penetrated hot air, the large part of air 

entrainment to negative buoyancy injected air was the hot air. 

• The flow was injected vertically from the ceiling to reach the stratified layer. At 

high hot air flow rate, the stratified layer was near the ground (Case 2), while the 

injected air needs long time to cross the distance between the jet and cold air, 

which increase heat transfer and the entrainment of hot air. 
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Figure 5.4.10: Comparison of interface level height with the jet speed, at hot airflow rate 

of Q
b 

= 1.0 m 3 / min and different cold airflow rates (Q c = 2, 4 and 6 m 3 / min) in the 
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Figure 5.4.11: Comparison of interface level height with the jet speed, at hot airflow rate 

of Q h = 2.0 m J / min and different cold airflow rates (Q c = 2,4 and 6 m 3 / min) 

in the environmental chamber. 
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Figure 5.4.14: Comparison of interface level height with the jet speed, at cold airflow rate 
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the environmental chamber. 
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5.4.5 Smoke Visualization of Cold Jet Tests 

In this section smoke visualization is included for comparison with the experimental 

results. Figures 5.4.16 to 5.4.20 are a momentum sequence photographs of a stratified 

and mixed flow with initial hot and cold airflow rates of (2 and 6 m3 
/ min), 

Richardson number of 200 and Reynolds number of 9700. The flow has been mixed 

using a jet of 0.11m in diameter. The injected air was in the range of 

(Vj = 0.0 to 15.0 m / sec). The sequence in the Figures shows the effect of cold jet flow 

on the stratified flow characteristics. 

Comparisons between the sequence figures illustrate the effect of momentum on the 

stratified flow characteristics. As the momentum is increasing, the smoke pictures 

indicate a more mixed flow in the lower zone and an upward translation of the stratified 

layer interface level height. Increasing the momentum causes a fully mixed flow at 

Vj = IS.Om/sec. 

The results are so important to design ventilation systems considering the pollutants to 

be above the heads of the occupants in the working zone. This will allow the occupants 

to run away in the case of fire hazards to be safe from highest temperatures. 

Unfortunately, it was difficult to get good-quality images for mixed cases of high 

momentum jet flows. At high jet flows, difficult flow phases, perturbations and 

fluctuations were introduced, while the flow is more mixed. For this case, the stratified 

layer is more dilute and the interface as well as the deviation of smoke refraction 

became so complicated to capture the images. 

In general, the experimental and visualization results obtained in this work are in good 

agreement considering that different modeling technique, different surrounding 

conditions, complex flow patterns and turbulent dissipations in the domain were found 

in these experiments. Despite these discrepancies between the experimental and 

visualized techniques, the results are accepted. 
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Figure 5.4.16: Video-recorded picture sbowing the stratified flow with initial cold and 

bot airflow rates of 2 and 6 m3 fmin, Richardson number of 2.0 and Reynolds 

number of 2008, with no jet flow (Vj = 0.0 m/ sec ). 

Figure 5.4.17: Video-recorded picture showing the stratified flow witb initial cold and 

bot airflow rates of 2 and 6 m3 fmin, Richardson number of 2.0 and Reynolds 

number of 2008, with a jet flow of (Vj = 3.0 m/ sec). 
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Figure 5.4.18: Video-recorded picture showing the stratified flow with initial cold and 

hot airflow rates of 2 and 6 m3 fmin, Richardson number of 2.0 and Reynolds 

number of2008, with no jet flow (Vi = 6.0 m/sec). 

Figure 5.4.19: Video-recorded picture showing the mixed flow with initial cold and hot 

airflow rates of 2 and 6 m3 fmiD, Richardson number of 2.0 and Reynolds number 

of 2008, with no jet flow (Vj = 9.0 m/ sec). 
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Figure 5.4.20: Video-recorded picture howing the stratified flow with initial cold and 

hot airflow rate of 2 and 6 m3 fmin, Richardson number of 2.0 and Reynolds 

number of2008, with no jet flow (Vj = 15.0 m/ sec). 

5.5 Mixing Flow Using Warm Jet 

5.5.1 Case 1: Stratified Flow for High Airflow Ratio. 

In this case, the airflow ratio is comparatively high (·Qc/Qh =2.0,4.0 and 6.0 m3fmin). 

The flow was stratified at lower hot airflow rate (Q h = 1 m 3 f min). The interface level 

height is relatively high. The effect of warm jet on the flow characteristics is shown in 

Figures 5.5.1 to 5.5.3. Figures 5.5.1 to 5.5.3 show the mixing behaviour under the 

compound effect of both jet momentum and cold airflow rate. From the comparison 

between the figures, the mixing was faster and more effective for both low and high 

cold airflow rates (Qc/Qh =2 and 6 m3fmin) (Figures 5.5.1 and 5.5.2). At maximum 

values of warm jet flow, the situation of fully mixed flow was reached as in the case of 

low cold airflow rate, while there is hot stratified layer near the ceiling in the cases of 

intermediate and high alues of cold airflow rates( Qc / Qh =4 and 6 m3 fmin). 

Figures 5.5.1 to 5.5.3 show a sequence of temperatures profiles for various jet speeds. 

From the figures , it can be een that inc rea ing the momentum leads to stratified the 
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flow in lower zone, whereas the initial stratified layer is translated upward to reach the 

ceiling. It is observed that an increasing of both cold airflow rate and warm jet 

momentum will mix the flow in the domain with two exceptions: 

1. A hot stratified layer near the ceiling due to the reverse jet flow that ejects 

backward from the floor. 

2. An overturns near the floor due to the horizontal movement of warm injected air 

when impingement with the floor. 

As shown in the figures, the interface level height is increasing by the jet momentum, 

while the thickness of the stratified layer is decreasing. Therefore, the warm jet flow 

should propagate stratification due to temperature difference and buoyancy forces, 

while it destroys the stratified layer due to high momentum airflow and high mixing 

process. It also characterizes the stratification level height, [Hee-Jin and Dale (2001)]. 

For more detail of data analyzed in Figures 5.5.1 to 5.5.3, see Figures (A2.5.1 to 

A2.5.3) in Appendix A2. 
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centre of environmental chamber. 
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5.5.2 Case 2: Stratified Flow for Low Airflow Ratio. 

As mentioned earlier (case 2, section 5.4.2), the airflow ratio is comparatively low 

(. QclQb =0.67, 1.33, and 2.0). The flow was stratified at higher hot airflow rate 

( Q b = 3 m 3 / min). The stratification is relatively weak (dT / dB = Min). Interface level 

height is at lower levels near the floor. 

Figures 5.5.4 to 5.5.6 shows the temperature profiles of stratified flow with a sequence 

of jet speeds. As shown in the figures, injected air has a significant effect on the 

temperature profile in the lower zone, while it has no significant effect on the average 

temperature in the upper zone. This was due to: 

1. The initial velocity of the injected air pushes the air to reach the lower zone, 

without mixing exchange. 

2. The initial temperature of the injected air flow through the upper zone with out 

exchanging heat with the hot air in the upper zone. 

3. Also, at low momentum, the influence of the slip velocity between the injected 

warm air and the air in the upper zone is relatively significant. This may result in 

large access of injected air to the lower zone, which increases the temperature 

variations and the mixing in that zone. 

Furthermore, the negative buoyancy of the injected air is increased in the lower zone. It 

is due to the temperature difference between the injected hot air and the relatively cold 

air in the lower zone. This will increase the entrainment volume fluxes through the wide 

domain, which increases the thickness of the lower zone, while the interface ascends 

significantly faster because of the comparatively hot air below the interface level. This 

pushes the interface level height upward to reach the ceiling, (Figures A2.5.4 to A2.5.6). 

More increase in warm jet flow will result in a fully mixed flow in the whole space. 

This is due to the decrease in temperature difference between the layers, which leads to 

weak stratification and so high mixing. In the same manner, high momentum will result 

in high circulation of mixing velocity in the space, which leads to destabilize the flow. 

Figures A2.5.4 to A2.5.6 show sequences of temperature profiles for various jet speeds. 

The results demonstrate the stratified layer height as a function of initial jet momentum 

over a wide range of flow rates. As discussed before, despite different types and values 
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of jet flow, the results show the interface level height is approximately proportional to 

the momentum jet flow, for the ranges over 0.22 - 2.17 m 4 
/ S 2 • The proportional degree 

is more significant in the case of warm jet flow compared with the cold jet flow. This 

was due to the comparatively high amount of energy dissipation and energy 

transfonnation (from potential to kinetic) in the case of cold jet flow compare to the 

case of warm jet flow. 

In the presence of warm jet, the warm air flows downward under the effect of jet 

momentum while the negative buoyancy decelerates the flow velocity. Therefore, it 

needs much momentum to reach the stratified layer. When it reaches the stratified layer; 

it repeats the same configurations mentioned earlier by the using of cold jet: 

Firstly, when the hot airflow rate is relatively high and the cold airflow rate is relatively 

low (Q c / Q h = 0.67). In this case, the stratified layer interface level height is low 

enough (near the floor) as shown in Figures 5.5.4 and A2.5.5. Thus the warm air 

injected from the ceiling needs much high momentum to reach the stratified layer. On 

reaching the stratified layer, the momentum will destroy the layer and mix the flow. 

As shown in Figures A2.5.4 and A2.5.5, in the lower zone, the temperature distributions 

illustrate a layering overturn at the lowest sensors. The overturns in temperature profiles 

occurred at ajet speed of(4.57 m/s). This overturn is due to the horizontal movement of 

injected air impinge near the floor. It is higher compared with the same case of cold jet, 

where it was occurred at lower jet speed of (3.04m1s). The difference is due to the 

negative buoyancy of injected air. In the other zones, the jet momentum has no 

significant effect, but more mixed flow. 

Secondly, when the stratified layer interface level height is above the floor with wide 

enough for the injected air to go through and flow horizontally under the stratified layer. 

In this case the flow was stratified at intermediate cold airflow rate (Qc /Qh = 1.33), as 

shown in Figures 5.5.5 and A2.5.5. In the lower zone, the injected air of low momentum 

impinged at the stratified layer leading to push it downward. Increasing the momentum 

is leading to a lower interface level height. Thus destroys the stratified layer as well as 

case 1. An overturn in temperature profile was occurred at lower momentum at a jet 

speed of 1.52 mls compare with the last case of warm jet. This was due to the long 

153 



distance needed to reach the stratified layer. In the other zones, the jet momentum 

shows more mixed flow. 

Thirdly, when the flow was stratified at higher values of cold airflow rate( QclQh = 

2.0). , as shown in Figures 5.5.6 and A2.5.6, while the stratified layer interface level 

height is above the floor with certain level be enough for the injected air to go through 

the stratified layer. In this case, the injected air will flow through the stratified layer 

leads to translate the stratified layer interface level height upward to reach the ceiling. 

Increasing of jet speed leads to increase the mixing in the lower zone and destroy the 

stratified layer before reaching the ceiling, while the large circulation is created in the 

whole space. 

For more detail of data analyzed in Figures 5.5.4 to 5.5.6, see Figures (Al.5.4 to 

Al.5.6) in Appendix Al. 
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Figure 5.5.4: Vertical temperature profile for various warm jet speed of 0.11 m 
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(Q c = 2.0 m 3 / min ) cold airflow rate at locations of 2.0 and I.S m respectively at 

the centre of environmental chamber. 
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Figure 5.5.6: Vertical temperature profiles for various warm jet speed of 0.11 m diameter, 

while the flow was stratified at (Q b = 3.0 m 3 / min) hot airflow rate and 

(Q c = 6.0 m 3 / min ) cold airflow rate at locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 
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Figure 5.5.5: Vertical temperature profiles for various warm jet speed of 0.11 m diameter, 

while the flow was stratified at (Q h = 3.0 m 3 / min) hot airflow rate and 

(Q c = 4.0 m J / min ) cold airflow rate at locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 
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5.5.3 Case 3: Stratified Flow at Intermediate Airflow Ratio. 

In this case, the airflow ratio is intermediate ( Q c /Q h =1.00, 2.0, 3.0), the interface level 

height is at mid height of the chamber. The flow was stratified at intermediate hot 

airflow rate (Q h = 2 m 3 
/ min ). The results show the momentum influencing the 

stratified flow, as shown in Figures 5.5.7. In this case, the injected air is pushing up the 

stratified layer towards the ceiling before it is destroyed at high jet momentum. As a 

result, the whole space becomes fully mixed. In comparisons with the other cases, it is 

seen that the mixing is higher and faster for the other cases, of weak stratification, 

compare with this case. 

Figure 5.5.7 to 5.5.9 show the average temperature profiles change with jet momentum. 

In the lower zone, the temperature is increasing to reach the average temperature of the 

whole space. The change was higher in the case of warm jet compare with the cold jet. 

It was due to the temperature difference between the injected air and the relatively cold 

air in the lower zone, and the entrainment volume flux. In the upper zone the 

temperature was decreasing with the momentum until it reaches the average temperature 

of the whole space. The change was higher in the case of cold jet compare with the 

warm jet. Based on the above, the temperature of the stratified layer is a complement of 

the temperatures in both zones. 

Increasing in jet momentum will increase the dilution (dT / dz = Min) and the height of 

the stratified layer until it becomes fully mixed. It is due to the decrease in the 

temperature difference between the layers due to the increase in the temperature of 

lower zone. The increase in circulated air due to the increase of momentum leads to 

mixing the flow in the whole space. 

For high values of cold airflow rates( Qc /Qh =3.0), the stratified interface level height 

rises up due to bouyancy effect near the oposite wall, which forms a recircultion near 

the ceiling leads to mixing the flow in the upper zone. 

As observed in cases 1 and 2, Figures A2.5.7 to A2.5.9 shows the temperature profiles 

at the thermocouple stand with negative temperature gradient in the lower zone. It 

occurred after certain value of jet speed (4.57 mls) when the injected air reaches the 

floor. It indicates for the layers overturn that results in a negative bouyancy and more 
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disturbances accelerates the mixing near the floor. The negative temperature gradient is 

due to the comparatively hot air impengement on the floor surface and flows 

horizontally at the surface. The disturbances, where due to the injected-air movement 

against the floor surface. In these cases, there are three regions of: 

1. Warm mixed air near the ceiling due to the recirculation of hot air in the uppper 

zone. 

2. Warm air near the floor due to the impenigment of hot air injected from the 

ceiling against the floor surface and its recirculation in the lower zone. 

3. Stratified layer in between, shifted upward and diluted with the increase of jet 

momentum. 

F or moderate air flow rate, where the flow is more stable and the interface level height 

is at the middle of the test chamber. The increase of cold jet speed leads to a horizontal 

air flow near the ground, which causes the height of the interface raise up. For the case 

of low or high air flow rate, where the interface level height is near the vertical 

boundaries of the environmental chamber (floor or ceiling), the increases in cold jet 

speed results in a high momentum air flow, which results in earlier fully mixed flow. 

For warm jet, the density of injected air increases due to the entrainment air from the 

surrounding. On reaching the lower levels in the chamber the warm air flows from the 

jet will expand across the bottom of the chamber and display denser air downwards. A 

natural circulation is thus set up within the space, [Hee-Jin and Dale (2001)]. 

It is found that the warm jet flow is more effective than that of cold jet, and the mixing 

of warm jet is faster. 

For more detail of data analyzed in Figures 5.5.7 to 5.5.9, see Figures (Al.5.7 to 

Al.5.9) in Appendix Al. 
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Figure 5.5.7: Vertical temperature profiles for various warm jet speed of 0.11 m diameter, 
while the flow was stratified at (Q h = 2.0 m 3 / min) hot airflow rate and 

(Q c = 2.0 m 3 / min) cold airflow rate at locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 
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Figure 5.5.8: Vertical temperature profiles for various warm jet speed of 0.11 m diameter, 

while the flow was stratified at (Q h = 2.0 m 3 / min) hot airflow rate and 

(Q c = 4.0 m J / min ) cold airflow rate at a locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 
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Figure 5.5.9: Vertical temperature profiles for various warm jet speed of 0.11 m diameter, 

while the flow was stratified at (Q h = 2.0 m 3 I min) hot airflow rate and 

(Q c :;:;; 6.0 m 3 / min ) cold airflow rate at a locations of 2.0 and 1.5 m respectively at the 

centre of environmental chamber. 

5.5.4 Combined Effect of Airflow Rates and Momentum Induced by Warm 

Jet on Stratified Flow 

In this section, the effect of both hot and cold airflow rates with the presence of 

momentum using warm jet is analyzed and discussed. 

Interface level height for various values of hot and cold airflow rates with the jet 

momentum, at fIxed input and output locations, are shown in Figures A2.S.1 0 to 

A2. S .15. The plotted data shows that the stratifIed layer interface level height is affected 

by the input airflow rates. While the effect of hot airflow rate on temperature profIles is 

signifIcant (Figures A2.S.13 to A2.S.l5), the effect of cold airflow rates is smaller 

(Figure A2.S.l0 to A2.5.12). 

Figures A2.S.l0 to A2.5.12 show the effect of warm jet speed on the interface level 

height. The results are for various values of hot and cold airflow with 
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= 1.0, 2.0, 3.0 m3 Imin andQ c = 2.0, 4.0,6.0 m 3 I min. The results show that the effect 

of cold airflow rate was insignificant for the cases of low and intermediate hot air flow 

rate, where the stratified layer interface level height is competitively high. The effect of 

cold airflow rate was significant at high hot air flow rate where the initial stratification 

was happened at low interface level height as explained earlier. In general, the results 

show that the effect of cold airflow rates on the interface level heights is more 

significant for high jet momentum than for low jet momentum. 

Comparison between Figures A2.5.10 to A2.5.12 and Figures A2.5.13 to A2.5.15 shows 

that, the effect of increasing hot airflow rates in mixing the flow using warm jet is more 

significant than the effect of increasing cold airflow rates, especially for the cases of 

intermediate values of warm jet flow and hot airflow rate. This was due to three reasons: 

1. The comparatively significant effect of hot airflow rates as a source of heat used 

in our case. 

2. The warm injected air and the hot airflow supply are from the same source, with 

an equal temperature. In the lower zone, the warm injected air works as a plume. 

With intermediate air flow ratio (Qc /Qh = 1 to 3), the plume has its complement 

between buoyancy and momentum. Any variation in hot airflow rate is seen 

clearly on the temperature scale. 

3. The warm air was injected vertically from the ceiling to flow downwards. At 

higher values of hot air flow rates (Qc /Qh = Min), the flow is stratified at lower 

levels (case 2). In this case, the injected air needs long time to cross the distance 

between the jet and the stratified layer. During this time, the variations of the 

injected air due to the hot air layering in the upper zone are significant. 

Figure A2.5.12 shows that, at comparatively high hot airflow rate, the flow will be fully 

mixed at a momentum of 0.35 m4/s 2 with an intermediate cold airflow rates. It is also 

(0.55 m4 /s 2 
) for the case of low cold airflow rate. For this case, the interface level 

height was at lower points (case 2). On the contrary, the figure shows that, to reach fully 

mixed flow in the presence of high cold airflow rate of ( 6.0 m 3 
/ s ), less than half of 

this momentum will be in needed ( 0.2 m 4 / S 
2 

), while it was three times for the case of 

cold jet,. 
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Figures A2.5.13 and A2.5.14 shows that, the flow will never be fully mixed at lower 

value of hot airflow rate of (1.0 m 3 
/ s ). In this case, the stratified layer interface level 

height goes upward to reach more than 80% of the chamber height despite the higher jet 

momentum. On the contrary, it reaches a fully mixed flow in the case of higher value of 

hot airflow rates (3.0 m 3 / s ), with better results for the higher values of cold airflow 

rate of (6.0 m3/s ). In this case, the flow is completely mixed at lower momentum of 

0.2 m 4/s 2 
• 

5.5.5 Smoke Visualization ofWann Jet Tests 

Smoke visualization was used to observe the behavior and the characteristics of the 

stratified flow. Different modeling techniques, various surrounding conditions, complex 

flow patterns and turbulent dissipations in the required domain were established for all 

the experiments. Both temperature and smoke visualization are included for comparison 

purposes. The experimental and flow visualization results obtained in this work are in 

good agreement. In this work, it became extremely difficult to get clear images for 

mixed cases of higher momentum jet flow, as mentioned in section 5.4.5. 

Figures A2.5.16 to A2.5.25 represents the temperature isothermal lines and photographs 

of smoke distribution before and after the warm air was injected. The stratified flow was 

initiated at cold and hot airflow rates of 2 and 6rri/miI. Richardson number of 200 and 

a Reynolds number of 9700. It is classified as strong stratified flow. 

Figures A2.5.16 to A2.5.19 are a sequence of temperature visualization showing the 

effect of warm jet flow on the stratified flow characteristics. The sequence images are 

covering different temperature distributions and mixing stages. The sequence 

temperature images are compared with the photograph images of smoke visualization. 

Comparing the right and left half of each Figures of A2.5.16 to A2.5.19, the effect of 

momentum mode of flow on the stratified flow is clearly shown. The figures show the 

mixed zones of temperature isothermal lines were close to one another because the 

profiles become more vertical (less stratification). It shows that the stratified zones of 

temperature isothermal lines were open to one another because the profiles become 
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more inclined (more stratification). From the figures, the change in jet momentum is not 

only impacted on the shape of the profiles, but also its position on the temperature scale. 

Figures A2.S.20 to A2.S.2S are a momentum sequence photographs for a six stages of 

mixed flow. The results are for smoke visualization, and the sequence of smoke images 

is referring to different temperature distribution. The flow was stratified at initial 

conditions of (2 and 6m3/min) for hot and cold airflow rates respectively. The 

injected air was in the ranges of (Vj = 0.0 to IS.Om/sec). The sequence lmages 

visualize the effect of warm jet flow on the stratified flow characteristics. 

Comparisons between the sequence figures illustrate the effect of momentum on the 

stratified flow characteristics. As the momentum increases, the smoke images indicate a 

more dilute of smoke concentration. Increasing the momentum causes a fully mixed 

flow. Figure A2.S.2S show a fully mixed flow with the presence of high momentum. In 

this case, a fully mixed flow, of large turbulent circulations, is strong enough to 

transform the laminar layers of smoke streamlines to turbulent ones at the smoke 

source. 

Both groups of temperature and smoke visualization are included for comparison. In 

general, the results obtained in this work are in good agreement, considering that 

different techniques were used. The sequence of temperature profiles gives the values 

of the temperature measurements at the thermocouple stand, while the sequence of 

smoke photographs gives the approximate geometries of the stratified layer in the whole 

space. The results are important in the design of pollutants flow in the working zone, 

and smoke managements. 

5.5.6 The Effect of Warm Jet Compare With the Cold Jet Momentum. 

It has seen that the jet momentum has significant influence on the mixing of the 

stratified flow characteristics. The results indicated that once the momentum was 

initiated a mixed flow grew in the occupied zone above the floor. The height of this 

zone is dependent on the stratified flow characteristics, and the temperature and 

momentum of the ceiling jet. 
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In the case of warm jet, the injected air is lighter; therefore, the momentum and 

buoyancy forces are opposed. In this case, the momentum forces will decrease to zero 

before the injected air looses its buoyancy. Thus, the flow will stratify at certain heights 

depending on the initial amount of momentum. 

In this case, it has seen two layers of stratification at the same time, mainly for the cases 

of low momentums (M j ~ 0.087 m 4 
/ s 2 

). In the case of the cold jet, the injected air is 

heavier than its domain. With initial momentum vertically downward, the momentum 

and buoyancy forces are reinforcing one another. In this case, the negative buoyancy 

can reach minimum values before the momentum is decreased to zero. It is due to the 

hot air entrainment from the upper zone. Thus the flow will stratify at certain level 

depending on the initial amount of momentum. 

Comparing the effects of cold and warm specific jet momentums on the interface level 

height, Figure 5.5.10 and 5.5.11 show the following: 

Firstly, at low hot airflow rate (Qh =1.0 mJ /min), the results show that variation of the 

cold airflow has small effect for both cold and warm jet flow (Figure 5.5.10). While the 

effect of cold momentum on the stratified flow interface level height is high, the effect 

of warm momentum is higher. This is visible in the presence of low momentum. It can 

be related to the following reasons: 

1. Insignificant temperature difference between the injected-warmed air and the hot 

air in the upper zone. Therefore, the injected air is flowing down under the effect 

of its initial momentum. When it reaches the lower zone: 

It looses its momentum due to the long time needed to cross the distance 

between the jet and the lower zone. 

It looses its negative buoyancy due to the entrainment of cold air from 

the lower zone. 

It increases the temperature and the amount of the air in the lower zone, 

and the thickness of that zone, thus shifted the stratified layer interface 

level height upwards to reach the ceiling. 

2. F or the cold jet, the injected air is flowing down under the effect of both 

momentum and negative buoyancy. Comparing with warm-jet flow, the effect of 

cold momentum was smaller, which is related to the following reasons: 
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The cold jet looses its momentum through the long distance needed to 

travel before reaching the lower zone. Compare with the warm case, the 

momentum loss is smaller because it needs less time to cross the distance 

due to its negative buoyancy and comparatively high slip velocity. 

The cold jet looses its negative buoyancy due to the entrainment of hot 

air from the upper zone, and the entrainment of cold air from the lower 

zone. Due to low temperature difference the entrainment is lower than 

the warm jet. 

It increases the temperature and the amount of air in the lower zone. The 

increase in temperature is lower compare with the warm jet. Thus the 

height of the occupied zone is increasing and the stratified layer interface 

level height is correspondingly shifted. 

From the above analysis, the use of warm jet is more effective, compared with the cold 

jet flow. 

Secondly, at higher values of hot airflow rate (Qh =2.0 m3 /min), the results show the 

cold airflow rate with a significant effect for both cold and warm jet flow (Figure 

5.5.11). While the effect of cold momentum on the stratified flow interface level height 

is high, the effect of warm momentum is nearly higher. For higher values of cold 

airflow rate (Qc = 6.0 m3 
/ min), the effect of momentum produced by cold jet is not 

effective compare with the other cases. This was due to the following reasons: 

1. At high cold airflow rate, the flow was stratified at higher interface level height. 

Therefore, the distance for the injected air to reach the lower zone is 

comparatively short, so less amount of hot air entrainment from the upper zone. 

In this, the injected air looses less momentum and reaches the lower zone with 

comparatively low temperature. Thus, increase the amount of cold air in the 

lower zone and act as a cold air supply. 

2. As discussed latter, more increase in momentum will increase the circulation in 

the lower zone leading to raise the stratified layer upward and mix the flow. 

At lower values of hot airflow rate (1.0 m3/s ), Figures 5.5.10 and 5.5.11 show that the 

flow will never be fully mixed. In this case, the stratified layer interface level height 

goes upward to reach more than 80% of the chamber height at higher momentum, while 
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it reaches the fully mixed case for higher values of hot airflow rates ( 2.0 m 3/ S ) with 

better results for the higher values of cold airflow rate (6.0 m 3 / s ). In this case, the 

flow is completely mixed at lower momentum of 0.2 m4/ s2 
• 
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Figure 5.5.10: Comparison of interface level height with the jet speed, at hot airflow rate of 

Q
b 

=1.0ml/ min and different cold airflow rates (Qc =2,4and6m 3 /min) in the 

environmental chamber. 
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Figure 5.5.11: Comparison of interface level height with the jet speed, at hot airflow rate of 

Q
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= 2.0 ml / min and different cold airflow rates (Q c = 2, 4 and 6 m 3 / min) in the 

environmental chamber. 
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5.6 Mixing Flow Using Inversion of Input Vertical Locations 

5.6.1 Inversion Technique 

Experiments were done to study the stratified flow characteristics USIng inversion 

technique to destroy the stratified layer and mix the flow. The temperature and smoke 

visualization have been carried out. Two cases of relatively strong stratification were 

studied using the experimental set-up presented in Chapter 3. The purpose of this 

technique was to remove the polluted and hot gases from the occupied zone, and to mix 

the air to a reasonably uniform temperature, yet satisfy the requirements of comfort 

environment in confined places. 

Chapter 4 presented the effect of opening locations on the stratified flow characteristics. 

The effect of input vertical location was obtained in section 4.4. Similar analyses were 

carried out to investigate the effect of inversion of input locations on the stratified flow 

characteristics. A fully mixed flow can be reached when the cold air flows through the 

upper location, while the hot air flows through the lower ones. In other words, mixing 

will be introduced under the effect of inputs overturns (inversion of input locations) 

despite the presence of momentum and buoyancy sources. 

In these types of flows, the source of hot air flow rate was the source of both buoyancy 

and momentum fluxes. While the direction of the flow is upward, the momentum and 

buoyancy were acting in the same direction. For the cold air supply, the direction of the 

flow was downward, so both momentum and buoyancy acted in the same direction. As 

classified by [Hunt et al. (2001)] the flow was of two categories: 

1. Warm air forced upwards, where the resulting flow is a forced plume. 

2. Cold air blown downwards, where the resulting flow is buoyant jet. 

In this case, there are influences between the buoyancy tending to stratify the interior 

and the momentum tending to mix it. Thus with a forced plume it is possible to go from 

the stratified case to the mixed case by changing the relative magnitudes and directions 

of the buoyancy and momentum fluxes. 

Figures 5.6.1 and 5.6.2 show the mixing of stratified flow using inversion technique. 

The results were for two cases of different flow rates. The results show how the 
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inversion of input locations influences the stratified flow characteristics despite the 

degree of stratification and the temperature difference. From the comparison between 

Figure 5.6.1 and 5.6.2, the temperature profiles show that the effect of hot airflow rate 

in stratified flow is clearly significant, while it disappears in the presence of inversion 

flow (in mixed flow). 

These results, regardless of different initial conditions and different values of airflow 

rates, showed that the stratified layer was broken down rather than translated to higher 

levels as shown in the case of jet flow. Refrigerators and big meat stores use similar 

technique (defrost). In this technique, the refrigeration cycle is reversed for few minutes 

to remove the ice concentrated in the refrigerator due to the condensation of water vapor 

inside these stores. 

As presented in Chapter 4, the change in the location of heat source was leaded to a 

change in the characteristics of the circulation flows formed, and so the characteristics 

of the stratified flow in the domain. In the same manner, the inversion of input 

supplier' s locations will change the circulations formed above and below the stratified 

layer and so affect the stratified flow characteristics. 
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Figure 5.6.1: Temperature profile showing the translation from fully stratified flow to fully 

mixed flow, using inversion technique. The flow was translated from initial situation 

(Qh =2.0m 3 / min at "hot =2.0m and Q , =4.0m 3 / min atH cold =0.5m) to a 

new situation of (Qh = 4.0 m J / min at H hot = 0.5 m and Q = 2.0 m 3/min , 

at H co'd = 2.0 m) where the exhaust height was fixed (Hex = 1.5 m). 
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Figure 5.6.2: Temperature profile showing the translation from fully stratified flow to fully 

mixed flow, using inversion technique. The flow was translated from initial situation 

(Q h = 2.0 m J / min at H hoi = 2.0 m and Q c = 6.0 m J / min atH cold = 0.5 m) to a new 

situation of H hoi = 0.5 m and Q c = 2.0 m J / min 

atH
co'd 

= 2.0 m) where the exhaust height was fixed (He. = 1.5 m). 

In Figure 5.6.1 , it is clearly concluded that the behaviour of mixing of stratified flow is 

strongly affected by the inversion of entering locations. Thus, the inversion of input 

locations is an effective process in mixing the flow and improving the removal 

efficiency inside the space. As shown in Figures 5.6.1 and 5.6.2, the initial stratified 

flow is established and the high temperature difference is become fully mixed with an 

average temperature comparatively high in the lower zone and low in the other zones. 

Inversion of input locations may result in a pressure drop in vertical direction when a 

cold air layer flows at higher levels overlies a warmer, less dense layer flows 

horizontally at lower levels. This leads to a negative velocity gradient and so low value 

of Ri number. Thus a completely mixed flow is introduced. 

From the results, changing the input location (for constant flow rates) does not change 

the temperature distribution of the stratification profiles, but change the level of 

stratified layer and the interface level height. It moves to higher or lower depends on the 

openings locations (Chapter 4). On the contrary, inversion of input airflow suppliers 
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gives a complete change in temperature profile and flow situation. It converts the flow 

from fully stratified flow to fully mixed flow, as shown in the figures. 

5.6.2 Smoke Visualization of Inversion Technique Tests 

Temperature visualization shows how the vertical temperature distribution changes with 

inversion of input locations. Comparing the right and left half s of various stratified 

flow conditions (Figures 5.6.3 and 5.6.6) shows the effect of inversion of input locations 

on the temperature isothermal lines. It shows a complete change for the distribution of 

temperature isothermal lines from the case of stratified flow to a case of mixed flow. 

In the left half of both figures, the flow was stratified with strong degree of 

stratification. It shows the stratified layers of temperature isothermal lines were open to 

one another because the profiles become more inclined (stratified flow). While the 

inversion was impact both the shape of the profiles and its position on the temperature 

scale. The smoke visualizations of this case, for different airflow rates, were shown in 

Figures 5.6.4 and 5.6.7 In this case the smoke is concentrated into the stratified layer 

above the lower zone rather than shorting up to reach the ceiling, as discussed in 

Chapter 4. 

In the right half, the temperature distribution does not show any variation with height 

over the full period of time. It shows the mixed zones of temperature isothermal lines 

were close to one another because the profiles become more vertical (mixed flow). In 

this case, the whole space becomes one zone, and the temperature distribution shows the 

same profiles (like an isothermal flow) even though initial situations changes 

furthermore. Also, the temperature distribution is somewhat independent of the flow 

situation. The smoke visualizations of this case, for different airflow rates, were shown 

in Figures 5.6.5 and 5.6.8. In this case, the smoke is rising up due to buoyancy, and 

shorting up to reach the ceiling rather than concentrating in the stratified layer over the 

lower zone. 

Figures 5.6.3 and 5.6.6 shows how the average temperature changes. It ascends in the 

lower zone, while it descends in the other zones with steeper descending in the upper 

one. It should be accepted due to the following reasons: 
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1. Fully mixed flow will result in large values of disturbances and turbulences 

leading to fully circulated flow in the whole domain. When reaching steady 

state, an isothermal flow in the chamber will introduce. 

2. Fully mixed flow will improve the effectiveness of hot gas removing from the 

chambers, which result in increasing of output temperature. Thus, the average 

temperature in the whole space regardless of the of the stratification degree. 

3. When a location of the heat source is at lower level, the convective heat gain 

from the heat source to the lower zone is increasing. While the lower zone is 

originally cold, this will result in an increase of its temperature, so that the 

temperatures in the upper zones are decreasing. As a result, a reduction in the 

average temperature of the whole domain is occurred, as discussed in Chapter 4. 

These observations were similar to the numerical observations of [Sinha et al. (2000)] 

for hot air inlet located near the floor level, while the exhaust located in the opposite 

wall or the ceiling. In their case, the buoyancy forces accelerate the penetrated hot air 

towards the exhaust. This enhances the secondary re-circulation around the path of the 

penetrated air, which increases the average temperature in most of the occupied zone. 

As discussed in Chapter 4, where the level of stratification is changed depending on the 

source location, because of the re-circulation flows generated in the mixed layers was 

changing with source location. 

As shown in Figures 5.6.3 to 5.6.8, the results indicate a close agreement between 

temperature and smoke visualization. While the stratified layer was broken down rather 

than translated to higher levels before reaching fully mixed flow, the flow was mixed 

without any needs for a new air supply, more airflow rates and more energy 

consumption. Also mixing the stratified flow and improving the pollutant removal 

efficiency inside the space was so better. So for low ventilation air flow rates and no 

additional airflow to be used, mixing by inversion technique will be preferable. 
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Figure 5.6.3: Temperature vi ualization showing the mixing of stratified flow of initial 

situation (Qh = 2.0 m J / miD at H bOI = 2.0 m and Q c = 4.0 m J / miD at 

H COld = 0.5 m) to a new situation of (Qh = 4.0 m J / miD at H hot = 0.5 m and 

Q ( = 2.0 m 3/ m iD at H (old = 2.0 m) where the exhaust height was fixed (Hex = 1.5 m). 
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Figure 5.6.4: Smoke visualization showing the stratified flow at the initial situation of 

Q h = 2.0 m 3 / miD andQc = 4.0 m 3 / miD and locations heights of H ho! = 2.0 m and 

H •• , .. = 0.5 m respectively, at fixed H Ao = 1.5 m. 

Figure 5.6.5: Smoke visualization showing the mixing of stratified flow of initial situation 

(Qh = 2.0 m 3 / miD at H hO! =2.0m and Q c =4.0m 3 / miDat Hco'd =0.5m) to a new 

situation of (Qb = 4.0 m
3 
/ miD at H ho! = 0.5 m and Q c = 2.0 m 3 / miD at HCOld = 2.0 m) 

where the exhaust height was fixed (Hex = 1.5 m). 
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Figure 5.6.6: Temperature visualization showing the mixing of tratified flow of initial 

situation of (Q b = 2.0 m 3 / min at H hot = 2.0 m and Q.= 6.0 m 3 / min at H cold = 0.5 m ) 

to a new ituation of (Qh = 6.0 m 3/ min at H hot = 0.5 m and Qc =2.0m 3/ mio at 

H = 2.0 m) where the exhau t height was fixed (H = 1.5 m ). 
cold ex 
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Figure 5.6.7: Temperature vi ualization howing the mixing of tratified flow of initial situation of 

(Q h = 2.0 m 3 / miD at H hoi = 2.0 m and Q, = 6.0 m 3 / min at H cold = 0.5 m ) where the 

exhaust height was fixed (H ex = 1.5 m ). 

Figure 5.6.8: moke visualization showing the mixing of tratified flow of initial ituation 

(Qh =2.0m 3 / minat H hO! =2.0m and Q c = 6.0 m 3 / minat HcOld =0.5m) to a new 

situation of(Qh = 6.0 m
3
/ min at H ho! =O.5mand Q c =2.0m 3 / minat HCOld =2.0m) 

where the exhaust height wa fixed (H ex = 1.5 m). 
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5.7 Summaries and Conclusions 

Mixed ventilation is where air is supplied into the space with relatively high momentum 

flux, in order that, the air in the space will be mixed to a reasonably uniform 

temperature, yet satisfying the requirement for air speeds. Thus is usually achieved by 

supplying air at high level within the space. For low jet momentum, the flow unable to 

reach the floor due to the stronger stratification layer that generated in the lower zone 

[chow (1996)]. 

Mixing of stratified flow was carried out using full-scale air-modeling technique, and by 

two technical methods: 

• By increasing the momentum forces to break the balance between buoyancy and 

momentum. This was carried out using both cold and warm jet flow. 

• By inversing the inputs vertical locations. 

The effect of initial jet momentum airflow on mixing the stratified flow was 

investigated by using experimental techniques. When a momentum of the jet is higher, a 

momentum turbulence gain from the momentum source to the lower zone increases, 

which results in change in the average temperature and in an increasing in the occupied 

zone by increasing the stratified layer level height. 

It can be concluded that the jet momentum has significant influence on the mixing of 

the flow and the stratified flow characteristics. The results indicated that once the 

momentum was initiated a mixed flow grew in the occupied zone above the floor. The 

height of this zone is a dependent of the stratified flow characteristics, and the 

temperature and momentum of the ceiling jet. 

Also the results showed that the stratified layer height is a function of the initial jet 

momentum over a wide range of flow rates. These results, despite of different types and 

values of jet flow, showed that the interface level height was approximately inversely 

proportional to the momentum in the case of cold jet, at least over the range 

of 0.22 - 2.17 m4 
/ S2 , and as expected for weak stratification the mixing was more 

effective and faster. 
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5.8.1 Cold Jet 

It is seen that increasing the momentum will increase the stratified layer interface level 

height, and more increase in jet momentum will increase the mixing in the lower zone 

and destroy the stratified layer before reaching the ceiling. From the three cases, it can 

be concluded that, for the case of strong degree of stratification and low momentum, on 

reaching the interface, the injected air will flow and stratified above the stratified layer 

for a certain distance depending on the degree of momentum, degree of stratification 

and interface level height. However, for low degree of stratification the injected flow 

will go through the stratified layer or destroying it, while for high degree of 

stratification, the stratified layer will stand against the injected flow of low momentum 

as a solid surface. 

Comparing the results of this case with those in case 1 and case 2, it can be noted that, 

the effect of hot airflow rate compare with cold airflow rate was much higher. For 

relatively cool jet injected air at high level from the ceiling, the entrainment volume flux 

from the upper zone is large enough. While the hot air domain of penetration is the 

upper zone, the significant effect of hot airflow rates should be comparatively. From the 

comparisons, it is seen that the mixing is higher and faster in case 1 and 2 since the 

temperature gradient and the degree of stratification is not strong enough as shown in 

this case. 

5.8.2 Warm Jet 

The effect of momentum of warm jet airflow on mixing the stratified flow was 

investigated. Extensive experimental measurements providing temperature profiles of 

various jet speeds of (0.0 to 15.0 m/s) are presented. The experiments were done using 

air-modeling technique. 

It is seen that the jet momentum has significant influence on mixing of stratified flow 

and flow characteristics. The results showed that the effect of warm jet is more 

significant especially in the lower and at low jet momentum. 

Comparisons between cold and warm jet flow show that the translation of the stratified 

flow level height and the mixing effectiveness are changed depending on the jet 
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temperature and momentum. Using warm jet airflow, the mixing of stratified flow was 

faster while the removing efficiently was higher. Using warm jet, the higher values of 

momentum will destroy the stratified layer and mix before the interface level height 

reaches higher levels like that of cold jet flow. 

The results demonstrated the stratified layer height as a function of the initial jet 

momentum over a wide range of flow rates. These results, with respect to different types 

and values of jet flow, showed that the interface level height was approximately 

proportional to the momentum in the case of warm jet, at least over the range of 

0.22 - 2.17 m4/s 2 
• 

5.8.3 Inversion of Input Vertical Locations 

Another area of experimental techniques used to mix the stratified flow is the inversion 

of input airflow suppliers. In this case, the buoyant cold layer in the lower zone will 

loose its buoyancy forces while being heated with the hot airflow penetrated at lower 

levels in the environmental chamber. Also the stratified layer will loose its stability and 

break down due to the drag and tearing of cold air penetrated downward from higher 

levels. The compound effect of these two situations will circulate the air in the whole 

space and disturb the stability of the stratified layer to reach fully mixed flow 

From the results, it is concluded that the behaviour of mixing of stratified flow is 

strongly affected by the inversion of entering locations (i.e. input hot air placed near 

floor and cold air flow near ceiling). The flow was being fully mixed without any needs 

for a new air supply, more airflow rates and more energy consumption. Thus, the 

inversion of input locations is an effective process in the mixing process of the flow and 

improving the pollutant removal efficiency inside the space. Also the results show that 

the initial stratified flow and the high temperature difference is becoming fully mixed 

with an average temperature comparatively low in the whole space. 

Comparing with mixing by momentum jet mixing by inversion technique, the latter will 

be comparatively preferable. 
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Chapter 6 

General Discussion of Stratified Flow 

6.1 Introduction 

This Chapter provides a discussion of the results presented in Chapters 4 and 5. 

Comparisons of the results obtained from the present experiments with the previous 

studies as well as the small-scale results are discussed. Implications of flow 

measurements, resolution and uncertainty are examined to identify the key similarities 

of these results. 

The analytical and schematic models proposed by [Skistad (1998)] and [Calay et al. 

(2000)] for selective ventilation in large enclosures were the basis for a full-scale 

experimental model used in this study (Le. Chapter 3). The model of [Skistad (1998)] 

was set up for the environmental chamber to study the flow parameters and stratified 

flow characteristics as explained in Chapter 4. In Chapter 5, the physical process 

proposed by [Calay et al. (2000)] for jet momentum was the bases for the model used to 

destratify the flow. 

A series of experiments were carried out usmg full-scale air modeling technique. 

Different smoke and temperature visualization techniques were used to investigate the 

phenomenon of stratification in the built environment to compare latter with the results 

of the present work. 

In Chapter 4, the effect of flow parameters such as airflow rates, ducts vertical locations 

and direction of flow were studied. In Chapter 5, both cold and warm jet momentum 

were introduced to mixing the flow of different stratification conditions. An inversion 

technique has been used in order to overturn the momentum buoyancy phase flow inside 

the chamber to break down the stratified layer and mixing the flow. 
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6.2 Comparison with Other Published Work 

The purpose of this section is to present related experimental data from previous studies 

in comparison with the present work. The results of full-scale air-modeling technique 

are compared with the related small-scale models. These comparisons are made to 

identify the similarities of flow parametric, therefore illustrating the similarities between 

a real full-scale technique and a small-scale one. 

Figure 3.1.1 showed a schematic process related to ventilation in rooms with a stratified 

flow situation. It shows a schematic drawing of selective withdrawal for a polluted layer 

of air-"Select-vent" presented by [Skistad (1998)]. The proposed work was to achieve 

three goals using the suggested model where the method of selective ventilation is still 

subject to research and a number of questions have not yet been answered. 

Firstly, to study the effect of flow parameters such as relative input and output airflow 

rates, which was an important parameter in the technical work of [Skistad (1998)], 

where the stratified flow characteristic £5 (the stratified layer thickness) is a function of 

extract airflow rate as evaluated by [Skistad (1998)] equation (6.2.1) 

(6.2.1) 

where k is a constant =2.0, Qout is the extract airflow rate in m3/s, B is the width of the 

withdrawal layer, g is the acceleration of gravity, T is the air temperature in OK, z is the 

height coordinate and £5 is the half thickness of withdrawal layer. 

Secondly, to achieve a significant saving of energy by zoning the space, above and 

below the stratified layer, to a working zone of clean-cool air and an upper zone of 

clean-hot air, while the pollutants are concentrated at the level of stratification to be 

extracted. 

Thirdly, to study the significance of inlet and outlet duct locations as a key factor in the 

stratification phenomenon and so in the ventilation process. It is necessary to 

characterize the exhaust height to be in the right location. Otherwise, when the exhaust 

location is situated in the upper zone, the extraction of fresh air is higher; hence the 

concentration of contaminants in the lower zone is higher. On the contrary, if the 
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exhaust location is situated in the lower zone or close to the stratified layer interface, the 

contaminant removal effectiveness is better. 

To answer the question of Skistad (1998) "How thick will the withdrawal layer be?" 

The stratified withdrawal layer is a very important component in stratified flow 

characteristics. It works as a thermal barrier between upper and lower zones from which 

the temperature difference and the degree of stratification are evaluated. 

Consequently, in comparing with the schematic model suggested by Skistad, the 

experimental observations in this work support the present model. Both models 

predicted the stratified flow characteristics using full-scale technique with several major 

differences between the present model and the schematic model of Skistad (figures 3.1.1 

and 6.2.1): 

• Whilst Skistad's model is a simplified analytical model, the present study is 

based on full scale experiments. 

• The results show that the stratified flow characteristics are affected by different 

flow parameters. The Skistad's model concerned with the stratified flow 

characteristics in terms of the stratified layer thickness, and related this 

parameter to the extract airflow and the geometry of the enclosure (equation 

6.2.1). 

• According to Skistad's analysis, the flow must stratify at the level of extraction 

(exhaust height), while in the present model it stratifies at the level of 

stratification between the bottom and the top of the full-scale height. It can also 

stratify at the level of neutral buoyancy when the level of stratification is higher, 

which depends on smoke density and extraction air flow rate. 

• According to Skistad's analysis, the stratified layer thickness gives the same 

results before and after inverting the input locations, which is in disagreement 

with the present results (Chapter 5), and the results of [Hunt et al. (2001)]. 

• According to Skistad's analysis the variation of temperature in the enclosure is 

linear which is in disagreement with the present results and the results of [Mundt 

(1995)], where the temperature distribution is non linear, and the temperature 

gradient is maximum somewhere below the ceiling where the contaminants 

concentrated. 
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Figure 6.2.1: Temperature visualization showing the stratified layer and 

zones of (Qb & Q. = 3 & 6 m3/ min, H.m •• I = 1.5 m). 

In ventilation applications, some of the heat source is placed at higher locations. In this 

case an amount of cold airflow rate is generated through the low level openings. Both 

Skistad and Linden models relates the stratified flow characteristics to the overall 

airflow rate (Qoul ), and ignore the effects of cold airflow rate. In our case, the mass flow 

rate was varied according to weather fluctuations, where the cold air supply is the 

ambient, so that the 0 erall airflow rate QOUI defined by equation 6.2.2 was used. 

(6.2.2) 

From equation 6.2.1 , the stratified layer thickness 8 is a power function of overall flow 

rate Q . An estimate for tratified layer thickness 8 at certain overall airflow rate Q t out ou 

is described by equation 6.2.3, and shown in Figure 6.2.2. 

(6.2.3) 

where A and b are con tant obtained from the best fit of the experimental results. 

Figure 6.2.2 shows the relationship between 8 and the total airflow rate, as evaluated for 

different types of cold and hot airflow rate. 

With the constants: A = 0.8 and b = -0.25, equation 6.2.3 becomes 
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8 = 0.8(QOUI )-{)25 (6.2.4) 

Fig 6.2.2: y=2.8 m, Qh= 1- 4 m3/min,Qc= 2-6 m3/min, Hh=2.0 m, Hex=2.5m 

1.00 

0 Qh=1.0 <> Qb=2.0 II Qb=3.0 

0.80 0 Qh=4.0 ~ kistad (\998) - Best fit 

0 <> • 0.60 <> • 
.-. • E 6 <> '-' 
<Q • 6 

0.40 • 
15 = 0.8 (~ut )-{) 2sl 

0 0 

0.20 

0.00 

2.0 4.0 6.0 8.0 10.0 12.0 

Qout (m3/min) 

Fig 6.2.2: The stratified layer thicknes 0 with the overall airflow rate QOUI for various values of hot 

airflow rateQb = 1.0,2.0,3.0 and 4.0m 3 fmin compare with the results of ISkistad (1998)1. 

The line repre ents the prediction of equation 6.2.4. 

Table 6.2.1 summarizes the stratified layer thickness 8 calculated by [Skistad (1998)], 

equation (6.2.1) and the present results, along with the variations of input airflow rates. 

Compared with the present results, there is no statistical agreement between these 

results. Skistad equation 6.2.1 was based on the withdrawal airflow rate 

QeXl = Q OU1 = Qb and the geometry of the enclosure, where the exhaust height is the 

height of stratification. orne of the variation in stratified layer thickness evaluations 

can be attributed to the methods used to estimate 8. As previously discussed, there is no 

mathematical equation that can identify the stratified layer thickness or pinpoint the 

location of its interface. For these reasons, the results summarized in table 6.2.1 and 

shown in figure 6.2.2, show an agreement for the cases of high airflow rate while for 

moderate and low flow the deviations is about 5-30%. In general, it is to be expected 
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that an agreement between the prediction of [Skistad (1998)] and the present measured 

data would improve as the reasons mentioned above are solved. 

Q. Q. Iv Q. Iv 
Q. (m l/miD ) (hour -1) (hour -\) 8 (m) 8 (m) 
(m l/miD ) (EQuation 6.2.1) (Measured) 

1 2 0.48 0.95 0.42 0.7 

1 4 0.48 1.90 0.47 0.51 

1 6 0.48 2.86 0.56 0.36 

1 8 0.48 3.81 0.63 0.35 

2 2 0.95 0.95 0.42 0.7 

2 4 0.95 1.90 0.46 0.6 

2 6 0.95 2.86 0.6 0.57 

2 8 0.95 3.81 0.67 0.5 

3 2 1.43 0.95 0.47 0.45 

3 4 1.43 1.90 0.56 0.45 

3 6 1.43 2.86 0.63 0.5 

3 8 1.43 3.81 0.7 0.45 

4 2 1.90 0.95 0.52 0.5 

4 4 1.90 1.90 0.6 0.6 

Table 6.2.1: The stratified layer thickness calculated by Skistad (1998) equations 

compared with the present evaluated values for several typical of experiments with 

several vailies of airflow rates. 

As discussed in Chapter 2, the outputs of small-scale models are displayed by two zones 

of stratified flow, while the stratified layer is a sharp interface between these zones. 

Therefore, the temperature difference is determined from the average temperatures 

above and below the interface. In practice, the interface between these zones is of 

significant height occurs are over a finite distance within the room called stratified 

layer. 

Despite the flow conditions and weather fluctuations, the stratified layer established 

using full-scale air modeling technique is still better than that of using small-scale 

models (model of Linden) as discussed in Chapter 4. The model of Linden may be 

appropriate to evaluate the stratified flow characteristics, by conserving the 

dimensionless parameters as reviewed in Chapter 2. 

184 



The experiments performed by Linden's model are different at some points from the 

set-up used in this research: 

In the research by Linden: 

1. Small-scale experiments were made in a salt-baths set-up to predict the natural 

displacement ventilation in combination with a wind stack. Both diffusion and 

radiation were assumed negligible, while the convective heat transfer cannot be 

neglected. 

2. The values of heating or cooling loads were varied through the density 

difference between the supplied liquid and the domain. 

3. The direction of the flow was vertical. The fluid flow driven only by density 

differences and solute transports. The stratification situation involved buoyancy 

forces is dependent on the solute concentration. 

Whereas in present research: 

1. Full-scale experiments were made in the environmental chamber with a 

mechanical mixing ventilation system. The temperature variation along the 

vertical height is evaluated. The influence of different flow parameters on the 

stratified flow characteristics was investigated. 

2. The change in the air heating or cooling temperature fraction results from the 

change of supply airflow rate ( Q cor Q h) rather than the supply temperature. 

3. The flow direction was differing due to the differences in the acting stream 

forces. The stratification situation was implicated by a coupling of buoyancy 

and momentum forces. 

As shown in figures 6.2.3 and 6.2.4, the results performed by Linden's model disagree 

at some points from the results evaluated in this research. 

In the research by Linden: 

1. The stratification occurs at a certain height between the ceiling and the floor, 

while the stratified layer is the layer between the clean zone and the ceiling, 

where the liquids layering behavior is to stratify the lighter liquid above the 

heavier ones. 
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2. The stratified layer interface level height was predicted as a sharp interface 

between two layers of air of differing temperature, clean and polluted zone, 

which in opposing to the results of [Mundt (1995)]. In the same time, this imply 

that a natural implementation of the stratification occur in our case. While in 

case of Linden model they made an artificial condition of experiments with 

totally different densities. 

3. The mathematical model of [Linden et. al. (1990)] did not explain the 

temperature distribution within the test-room. Both diffusion of heat and 

thermal radiation were neglected, while the remaining mechanism for heat 

transfer is convection. Therefore, two layers of air of differing temperatures can 

co-exist in the same confined space without any diffusion over the sharp 

interface. [Howell and Potts (2001)]. 

4. The mathematical model of [Linden et. al. (1990)] was in good agreement with 

the salt-bath technique, where the salt-bath technique also neglects the 

mechanisms of thermal radiation and diffusion [Howell and Potts (2001)]. 

Whereas in the present research: 

o The stratification can occur at any level inside the chamber, where the gases 

behavior is lighter and can be stratified at different heights. 

o The stratified layer interface level height was the line of maximum degradation 

of temperature profile with vertical height, while the ventilated space was 

divided into two clean zones with a polluted-stratified layer in between, which 

is in agreement to the results of [Mundt (1995)]. 

o The temperature distribution within the test-chamber is realistically explained, 

while both diffusion of heat and thermal radiation during the stratified layer 

coexisted. Therefore, two clean zones of air of differing temperatures can 

coexist in the same confined space, and a stratified layer of significant thickness 

was in between, this naturally occurs in real environment. 

o The results of temperature measurements and smoke visualization were in good 

agreement with the results of [Mundt (1995)], where thermal stratification 

occurs, and both thermal radiation and diffusion were present. 

An estimate for the stratified layer interface level height h at a certain effective opening 

ratio can be obtained from the present results and compared by the work of [Linden 
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(1990)] , who e timated the sharp interface level height with the effective operung 

ratiosA'/H 2 and AOL/H: 

A ' = ___ a--'-l_a--=2=----__ 1 (6.2.5) 

( ~(a ~ / c+any 

where a1 and a2 are the input and outlet opening areas, and c=1 IS the value of 

discharge coefficient used by [Linden (1990)] for calculating A *. 

Linden (1990) used equation 6.2.5 to estimate the actual airflow rate. In our case the 

effecti e opening area can be e timated from the measured values of airflow rate, 

assuming the chamber i full insulated: 

(6.2.6) 
out 

Figure 6.2.3: badowgraph image show the Figure 6.2.4: Temperature visualization 

region of harp den ity gradient (between the bowing tbe stratified layer, lower and upper 

white line ), and tbe zone at t=470 . ILin and zones Of(Qh & Qt = 2 & 6 m3/ min). 

Linden (2002)1. 

Figures 6.2.5 and 6.2.6: how the stratified layer interface level height with the effective 

opening ratios A' / H 2 and A °L/H for different airflow rates. The figures show that 

with an increa e in effecti e openings ratio, the stratification interface level height 
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remains constant. Good agreement has been reported between the present results, using 

air modeling technique, and the predictable and experimental data using the salt-bath 

technique (Linden et. aI. , 1990). 

According to the stratification scheme shown in Figures 6.2.5 and 6.2.6, poor 

quantitati e agreement is reported at high hot airflow rate of (3.0 m3/min). The poor 

agreement is due to conditions and assumptions of Linden work, where the airflow rate 

of natural ventilation is comparatively low compared with 3.0 m3 Imin hot airflow rate. 

The stratified layer interface level height with effective opening ratios A */H 2 

1.00 

0 Qh =1.0 
b. Qh=20 

0.80 -1 • Qh=30 
<> Lmden et al (1990) 

- Predictlon of Linden (1990) 

0.60 - ¢ ¢ 

::c -. 
.c: ¢ 

0.40 -1 ¢ 

• 
0.20 - • • 
0.00 

0.00 0.02 
A*1H2 

0.04 0.06 

Fig 6.2.5: The stratified la er interface level height hlH with the effective opening ratio A*1H2 for 

various value of hot airflow rateQb = 1.0,2.0 and 3.0 m 3 f miD compa re with the results of 

Linden (1998). The line represents the prediction of Linden (1998). 
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:t --.=:. 

The stratified layer interface level height with effective opening ratios 

A" L/H 
1.00 I 

• Qh =1 m") 'min 

• Qh=2 m"3/mm 
0.80 ~ • Qh=3m"3/mm 

6. Lmden el al (1990) 

- Prediction ofLmden el a l (1990) /:::. /:::. /:::. 0.60 l 

- /:::. • -0.40 -' • D. D. 

• 
0.20 1 • • 

• 
0.00 j 

, 
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Fig 6.2.6: The stratified layer interface level height hlH with the effective opening per unit length 

A*LIH for various alues of hot airflow rateQh = 1.0,2.0 and 3.0m 3 Imin compare with the 

results of Linden (1998). The line repre ents the prediction of Linden (1998). 

6.3 Discussion on Findings 

6.3.1 Effect of Space/ Time Variations 

As discussed in Chapter 3, measurements were taken at several locations inside the 

environmental chamber. The scale of these experiments was in both space and time 

variations. It was designed to address the consequences of variations in time and space 

of flow conditions that affect stratified flow characteristics. 

As discussed in Chapter 4, in the presence of stratification, the parameters 

characterising the stratified layer deformation are the stratified layer interface level 

height (h), stratified layer top height (h'), stratified layer thickness (8), the degree of 

stratification DS and the temperature gradient inside the stratified layerdT/d8. The 

relatively uniform distribution of flow along and across the direction of flow is shown 

in Figures 6.3.1 and 6.3.2. Figure 6.3.1 and 6.3.2 show the stratified flow characteristics 

with relatively fixed heights, which support the suggestions mentioned earlier for the 

governing equations, where the flow is as umed to be uniform. 
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Despite the variations of temperature profiles in both along and across the direction of 

the flow, the results demonstrated three dimensional stratified flows with a stratified 

layer characteristics almost unifonn in both along and across the direction of the flow. 

Figure 6.3.1 shows the plot of flow characteristicsh'/H, h/H and 8/H against the 

dimensionless length of x/H. The results shows that the temperature profile in the 

environmental chamber is precisely symmetrical in the x-direction and the flow 

characteristics are unifonn with small variations in the stratified flow characteristics as 

presented earlier. 

Figure 6.3.2 shows the plot of flow characteristics h'/H, h/H and 8/H against the 

dimensionless width of y /H. The results shows that the temperature profile in the 

environmental chamber is precisely symmetrical in the y-direction and the flow 

characteristics are unifonn. As presented earlier (Chapter 4), the variations in the 

vertical values are insignificant at the entire locations. Whilst, at the walls, the 

temperature difference and momentum are comparatively high which decreases the 

degree of stratification due to disturbances of the walls. 

Comparing the results shown in Figures 6.3.1 and 6.3.2 with that in Figures 4.5.13 and 

4.2.3 gives a good agreement between results obtained by temperature sensors and that 

by smoke visualisation. 

As a result, the vertical temperature profile variation in the environmental chamber is 

near symmetrical. Thus the flow characteristics are unifonn, and the stratified flow is 

assumed two dimensional. 
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y=2.8 m, Qh=2 mJ/min,Qc=6 mJ/min, Hh=2.0 m, Hex=J.5m, Ri-133, Re-16192, 
Ar-II 
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Figure 6.3.1: Stratified flow characteristics h '/ " ,h/ " and 0/" against the dimensionless length 

of x/ H for a number of locations along the direction of the flow, where (Q b = 2.0m J / min) 

and(Qc =6.0m J / min). 

x=3.75 m, Qh=2 mJ/min,Qc=6 mJ/min, Hh=2.0 m, Hex=1.5m, Ri-IOO, Re-19400, 
Ar-92 

1.00 

0.80 
O hM l1 o/H ¢h'/H 

:I: 
0 0 

~ h'/H=0.625 ;:Q 0.60 0 0 0 
:I: 
:= 

0 0 hlH =0.433 ;; 0.40 
0 0 0 0 

.c 

6. 6. 
0.20 A O/H= 0.192 

0.00 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

y/H 

Figure 6.3.2: tratified flow characteristics h 'I" , h/ H and o/H against the dimensionless width 

of y /H for a number of locations across the direction of the flow, where (Q h = 2.0m J / min) 

and(Q c =6.0m J / min). 
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In built environment, the flow is typically stratified. The degree of stratification DS 

depends on the geometry of the space and the flow conditions. When the degree of 

stratification reaches unity (DS=I), the flow becomes homogenous (pure mixed flow). 

When a stratified flow changes to mixed flow, its mechanical properties will change. 

The change from a stratified to a mixed flow takes place over a period of time called 

conversion period tc. The period of time is characterised by space and time variations. 

It is affected by the stratified flow characteristics, the technique used in mixing and the 

characteristic time t. 

Based on the continuity equation, the change in airflow rate across the chamber ~Q is: 

v 
L\Q=-

t 
(6.3.1) 

where V is the volume of the environmental chamber and Qin and Qout are the input and 

output airflow rates, the estimate characteristic time is given by: 

L\Q 
t=-

V 
(6.3.2) 

Creation of stratified flow by increasing the hot airflow rate was shown in Figure. 4.3.1. 

In this case the characteristic time given by equation 6.3.2 is t =126 minutes. By 

increasing the hot airflow rate by 1.0 m3
, the conversion period was (tc =10 minutes) 

[16:01 to 16:11], while the time needed to reach the steady state condition is ts=lOO 

minutes. 

The time at which mixed flow occurs should be the total of the conversion time and the 

steady state periodic time. In the same manner, it is the characteristic time needed to 

maintain the stratified case and go over the flow variations. Thus, the characteristic time 

and the time needed to reach the steady state condition are always equals. 

(6.3.3) 

Time classification 'tc 'ts 'tc+'ts 't ('tc +'ts)/'t 

Values in minutes 10 100 110 126 87% 
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6.3.2 Effect of Airflow Rates 

As investigated by [Li and Delsante (2001)], [Chen and Li (2002)] and [Fitzgerald and 

Woods (2004)], the vertical position of the interface was related to the ratio of the upper 

and lower vent areas depending on the nature of the heat source. As discussed in 

Chapter 4, both hot and cold airflow rates were adjusted to maintain on the stratified 

layer and the stratified flow characteristics. Therefore, the control on a stratified layer 

interface level height, up or downward, is achieved by adjusting the airflow 

ratio R = Q c /Qh as a key parameter of input conditions. 

Figure 6.3.3 shows the change in the stratified layer interface level height hIH with 

respect to airflow rate ratio Q c / Q h • 

It is identified that the stratification interface level height increases with the airflow 

ratio for several amounts of hot and cold airflow rates. From the results shown in Figure 

6.3.3 

h 
- oc Q H c 

h 1 
-oc-
H Q h 

or, 

with the boundary condition ~(O)= 0, B = 0 
H 

(6.3.4) 

Figure 6.3.3 shows the data points measured and the best fit line for the data, which was 

obtained with A=0.2 and n=0.5 and described by equations 6.3.5 

~ = O.2(~J°.5 
H Qh 

(6.3.5) 
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The region above the curve is thus dominated by the contaminant zone, and clean zone 

dominates the region beneath the correlation curve. 

Interface level height h as a function of airflow ratio Qc/Qh 

1.00 

t:. Qh= 1.0 

0.80 ~ <> Qh=2.0 

h (Q r <> Qh= 3.0 

• Qh=4.0 
- =0.2 _c - Best fit 
H Q h 

0.60 ~ 

::c 
~ :c ¢ 

0.40 -1 

¢ 

0.20 -l 

• • • 0.00 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

Qc/Qh 

Figure 6.3.3: Variation of the stratified layer interface level height h/H with the ratio of input 

airflow rate Qc/Qh for various values of hot airflow rateQh = 1.0,2.0,3.0 and 4.0m 3 Imin . 

The line represents the prediction of hlH as a function of Qc/Qh, (equation 6.3.5). 

As a balance indicator, the stratified layer interface level height h revealed the ratio of 

buoyancy to momentum forces. As a function of overall airflow out Qout , Figure 6.3.4 

shows no specific relation between h and Qout . Observation of Figure 6.3.3 and 6.3.4 

once again shows that the stratified layer interface level height h is related to the ratio of 

airflow rate Q c / Q h rather than the overall airflow rate Q out = Q h + Q c . 
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Figure 6.3.4: Variation of the stratified layer interface level height hlH with the overall output 

airflow rate for various values of hot airflow rateQ h = 1.0,2.0,3.0 and 4.0 m 3 I min . 

Figure 6.3.5 shows the change in the stratified layer thickness 8 with respect to airflow 

rate ratio Qc/Qh . As shown in Figure 6.3.5 , the stratified layer thickness 8 is decreased 

by increasingQc/Qh' The results are in agreement with [Linden (1979)], which 

identified the needs for input flow rates to remove the mixed fluid from the stratified 

region in order to keep its thickness constant. 

with the boundary condition ~ (00) = 0, 
H 

8 b( Qc 
) 

-=Ae Qh 

H 
(6.3.6) 
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where A and b are constants obtained from experimental results using the best fit of the 

data points measured. ince A=0.2, and b=-0.0627, the best fit shown in Figure 6.3.5 is 

described by equations 6.3.7 

8 - 0 0627 ( Q,) 
-= 0.2 e Qb 

H 
(6.3.7) 

Using equations 6.3.5 and 6.3.7, it possible to obtain an estimate for the flow 

characteristics 8 and h of stratified flow for various airflow rate Qh and Qc . 
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Figure 6.3.5: Variation of the stratified flow thickness 0 with the input airflow rate 

ratioQc / Qb for ariou values of hot airflow rateQh = 1.0,2.0,3.0 and 4.0m 3 Imin . 

The line repre ent the prediction of (6.3.7). 

6.3.3 Effect of Buoyancy to Momentum Fluxes 

Let us consider the Richard on number to characterise the stratified flow since it is the 

ratio of the buoyancy to the momentum forces, which are the main forces in completion 

to detennine the stratified layer thickness 8. Figure 6.3.6 shows the change in the 

stratified layer thickness 8 with the stratified flow Richardson number Ri. The value of 

Ri wa aried between 3.8 to 200, which very much spans over a wide range of 

operating conditions. For high alues ofRi = 200, the stratified layer thickness is shown 
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to be with significant effect. As the value Ri decreases to 3.8, 8 is decreased. Thinner 

stratified layer thickness is expected to form upon further decrease in Ri value. This is 

referred to the decrease in the ratio of the Ri physical definition (buoyancy to 

momentum forces), which causes a steep temperature gradients in the vertical direction 

of the thermocouple stand. 

Figure 6.3.6 shows the correspondence between stratified layer thickness 81H with Ri 

number. sing the best fit line, it is possible to obtain an estimate for the stratified layer 

thickness 8 for flow Ri number. This line is described by the form: 

(6.3.8) 

where A and b are constants obtained from experimental results. Since A=O.1217, 

b=O.0837, the fitted curve shown in Figures 6.3.6 is described by equation 6.3.9. 

! = 0.121 7 Ri 00837 

H 

tratified layer thickness as a function of Ri number 

(6.3.8) 

0.40 ------------------------~I 

A Qh- I.O • Qh=2 0 • Qh=3 .0 
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• QIF4 0 - "'" fi, • 1 

:::: 
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A • - • • • 
A A o/H = 0.1217 Rio.o837 
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0.00 ..,..,------.--------.-------,---------1 
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Ri 

Figure 6.3.6: Variation of the tratified flow layer thickne s o/H with the stratified flow Ri number 

for variou values of hot airflow rateQ h = 1.0,2.0,3.0 and 4.0 m 3 / min. The line represents 

the prediction of (6.3.8). 
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The variation of stratified layer thickness with the Reynolds number is displayed in 

Figure 6.3.7. The Reynolds number was varied between 7000 and 30000. The results 

show significant variations in the flow characteristics due to the increase in momentum 

forces upon the increasing of Reynolds number. Thinner stratified layers are shown to 

form with the increase in Re values. 

The fitted curve shown in Figure 6.3.7 is the correspondence between stratified layer 

thickness 8 and flow Re number. It is described by equation (6.3.10). Using the best fit 

line, it is possible to obtain an estimate for the stratified layer thickness for flow Re 

number. 

(6.3.l0) 

where A and b are constants obtained from experimental results. The fitted curve shown 

in Figure 6.3.7 is described by equations 6.3.11 

~ = 3.6757 Re -03181 
H 

y=2.8 m, Qh= 1- 4 m3/min,Qc= 2-6 m3/min, Hh=2.0 m, Hex=2.5m 

0.40 
A Qh=1 .0 • Qh=2.0 

• Qh=3.0 • Qh=4.0 

0.30 -Power (Best fit) 

A • ::I: 
0.20 ............... • -10 • • • • • 

A A 
0.10 -; 

~ IH= 3.6757Re-O·3181 

0.00 

5000.0 10000.0 15000.0 20000.0 25000.0 

Re 

(6.3.11) 

30000.0 

Figure 6.3.7: Variation of the stratified flow layer thickness o/H with Re number for various 

values of hot airflow rate Q h = 1.0,2.0,3.0 and 4.0 m 3 / min . The line represents the 

prediction of(6.3.11). 
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The study has involved a number of concepts introducing additional governmg 

parameters. The Richardson number is a measure of stratification but with the stratified 

layer thickness 0 and other characteristics, its variation is slight (Figure 6.3.6). An 

overall Richardson number Ri can be considered to relate buoyancy effects to 

momentum effects but can't be used to measure the buoyancy effects. The Reynolds 

number is a measure of stratification (Figure 6.3.6). It can be considered to relate 

momentum effects to viscous effects and can be used to measure the momentum effects. 

Let us consider the ratio R = Ri to characterise the stratified layer thickness 0 since it 
Re 

is also the ratio of the buoyancy to the momentum forces. Figure 6.3.9 shows the 

change in the stratified layer thickness 0 with the ratio R. The value of R was varied 

from 0.0 to 0.027. The low values of R indicate the low values of flow characteristics 

where the buoyancy forces become diluted, while the momentum forces become 

concentrated. With more decrease in the ratio R, the flow becomes further weakened. 

When R- 0.0, the stratified layer is diminished and the flow changed to a pure mixed 

flow. As R increases, the stratified layer thickness becomes thicker and stronger. 

Figure 6.3.8 show the values of the stratified layer thickness 0 at different ratios of 

R = Ri/Re within the ranges of 0.0-0.027. The relation between 0 and R is 

approximately correlated by: 

o (Ri )0.092 
-=0.2874 -
H Re 

(6.3.12) 

The variation in the profile indicates that the stratified layer thickness is increased by 

increasing the ratio R and 0 becomes thicker. 

199 



y=2.8 ro, Qh= 1- 4 m3/min,Qc= 2-6 m3/min, Hh=2.0 ro, Hex=2.5m 

0.40 ..,-----------------------------, 

• Qh=IO • Qh=2.0 • Qh=3.0 

• Qh=4 0 - Best fit 

0.30 ~ 

• 
0.20 -I • _..;..~=:_-..J.:.....------------

~ •• 1i 
•• 0.10 -I ( 

Ri )0.092 
0 = 0.2874 Re 

0.00 -r--------.----------.----------1 
0.00 0.01 0.02 0.03 

RilRe 

Figure 6.3.8: The variation of stratified layer thickness with the mmomentum-buoyancy ratio 

R=Ri!Re for variou values of hot airflow rate Q h = 1.0, 2.0,3.0 and 4.0m 3 / min . The line 

represents the prediction of equation 6.3.13. 

To evaluate the main effective force in stratification mechanism, the relation between 

stratification and buoyancy must be define and evaluated to investigate the importance 

of buoyancy. Let us consider a non-dimensional parameter AH = Ri Re .It measures the 

ratio of buoyancy forces to viscous forces. The parameter AH can be evaluated for 

examining the variations of a stratified flow characteristics under the effect of buoyancy 

forces. 

Figure 6.3.8 shows the change in the stratified layer thickness 8 with the parameter AH. 

The value of AH was varied from 0.0 to 4 xl 0+6 
• The relation between 8 and AH, 

shown in Figure 6.3 .9, is approximately correlated by: 

~ = 7 X 10-9 (RiRe) + 0.1 637 
H 
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Figure 6.3.9: The variation of stratified layer thickness with the buoyancy-viscous ratio AH=Ri Re 

for variou value of hot airflow rate Q b = 1.0,2.0,3.0 and 4.0 m 3 I min. The line represents the 

prediction of eq ua tion 6.3.12. 

From equation 6.3.13 and Figure 6.3.9, ~ == 0.1637 and the variations of the stratified 
H 

layer thickness D with the parameter AH is small whilst the variations of D with the Re is 

higher (i.e Figure 6.3.7). Thus: 

"The effect of Re number on the stratified layer thickness l5 is greater than the effect 

of AH" 

Effect of [Re] >- Effect of [AH] 

JJ 

Effect of [M] >- Effect of [B] 

201 



u 

"The effect 0/ Momentum/orces on the stratified layer thickness is greater than the 

effect 0/ Buoyancy" 

In which, B is the Buoyancy forces, M is the momentum forces and V is the Viscous 

forces. 

6.3.4 Effect of Exhaust Height 

Several tests were performed to investigate how the opening height affects the stratified 

flow characteristics in the stratified flow. These tests were conducted by changing both 

input and exhaust height while keeping both the cold and hot airflow constant. As 

presented in Chapter 4, the higher the vertical input location, the higher the interface 

level height. The exhaust vertical location does not alter the position of the interface 

level height. It could be in the locations above or below the interface level height. 

It has been found that the interface level height h is directly proportional to the exhaust 

height i.e. the height where flow becomes stratified. Therefore by modifying the exhaust 

position the removal of contaminated air from a multipurpose industrial space can be 

selectively achieved as proposed by [Calay et al (2000)]. 

Figure 6.3.10 shows vertical temperature profiles for exhaust aperture locations 

h varied from 1.0 to 2.5m, for a flow of Ri= 40-200 and Re-2500 -32600. By ext 

increasing hex, the flow becomes more stratified, the interface level height is ascending 

and the average temperature inside the chamber is decreasing down, which improve the 

effectiveness of ventilation, heat removing and energy saving. 

Figure 6.3.11 shows that the location of the interface level height h is directly changed 

with the change in the exhaust height. It increases by increasing the exhaust height. This 

pattern agrees with the findings of [Calay et al (2000)]. However, the stratified layer 

thickness is decreased by increasing the exhaust height. This is not so for all cases as 

observed from Figure 6.3.11, where the sharper interface 0 is ath ex1 = H/2, where the 
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degree of stratification is higher as shown in Figure 6.3.12. In this Figure, the stratified 

layer temperature gradient ~ T /8 shows a higher value of (12 ·C 1m). 

The exhaust location does not alter the position of the interface level height when the 

momentum forces dominate the flow, the interface level height was below the exhaust 

position when the momentum forces at the floor are high compared to the global 

buoyancy forces (Qc/Qh is low). When momentum is increased at the floor level, this 

also changes the buoyancy forces; however, the combined effect of inertia and 

buoyancy forces yields into the development of a mixed zone close to the floor and the 

stratified layer is pushed upwards. The interface forms between 0.25H-0.3H, which is 

below exhaust location at 0.5H. 

The exhaust location does influence the level of the interface but the interface can form 

above or below the exhaust height depending upon the relative magnitude of the 

momentum and buoyancy forces. In order to improve the effectiveness of ventilation 

and for energy efficiency, the optimum location for exhaust is at the interface or where 

the temperature reaches its maximum above the occupied zone. When the exhaust 

position is above the interface level and within the stably stratified zone, the 

contaminants are extracted efficiently, and the age of air at the breathing zone is higher 

However, when the exhaust location is not at the stratified zone and being either below 

or above this zone, the removal efficiency becomes low. For example when the extract 

point is below the stratified zone, excess fresh air from the occupied zone can be 

removed. When the exhaust location is situated in the upper zone the concentration of 

contaminants in the lower zone may get too high. Therefore the positioning of exhaust 

must be designed as a significant part of the building HV AC system. 
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Effect of exhaust height on the stratified layer 
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Figure 6.3.10: The stratified layer temperature profile along the vertical axis for different exhaust 

heights (1.0, 1.5, 2.0, 2.5 m) at hot airflow rate 2.0 m 3 / min and cold airflow rate 4.0 m 3 / min. 
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Figure 6.3.11 : The tratified flow characteristics hlH and o/H as a dimensionless form with the 

exhaust height Hex!H at hot airflow rate 2.0 m 3 / min and cold airflow rate 4.0 m 3 / min. 
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The sensitivity of both temperature gradient !:l T I dz and degree of stratification DS 

patterns to varying the exhaust height Hex has been investigated. Figure 6.3.12 shows 

that the temperature gradient and the degree of stratification are sensitive to the exhaust 

vertical location. As discussed in Chapter 4, the higher degree of stratification is at 

intennediate values of input airflow rates. The height of the exhaust vertical location 

and the higher degree of stratification shown in Figure 6.3.12 are reflected by the 

location and amplitude of the highest point on the (DS - Hex) plot, respectively. In this 

Figure, the stratified layer temperature gradient L\ Tie shows a higher value of 

(12 °c / m), while the degree of stratification DS shows a higher value of (4.26). The 

results conclude that the degree of stratification DS exhibits a sharp decrease at a critical 

Hex = O.SH. For flows greater than or less than this critical height DS is decreased, 

while the stratification gradually disappeared. 
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Figure 6.3.12: The stratified flow temperature gradients defined by AT/Ao and AT/dz and the 

degree of stratification 0 with the exhaust height Hex at hot airflow rate 2.0 m 3 / min and cold 

airflow rate 4.0 m 3 / min. 
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6.3.5 Detennination of Critical Momentum 

Both buoyancy and momentum can influence the room air movement [Awbi (1998)]. 

While the flow of high buoyancy was introduced in the chamber, the flow of high 

momentum was supplied downward from the ceiling jet. As discussed in Chapter 5, the 

magnitude of momentum needed is depending on the degree of stratification, stratified 

layer interface level height and the stratification conditions. It can be seen that the jet 

momentum has significant influence on the mixing of the stratified flow characteristics. 

The results indicated that once the momentum was initiated a mixed flow grew in the 

occupied zone above the floor. The height of this zone is dependent on the temperature 

and momentum of the ceiling jet as well as the stratified flow characteristics h, 0 ad DS. 

The variations of jet speed Vj and jet momentum M j with interface level height for both 

hot and cold jet flow are shown in figures 6.3.13 and 6.3.14. The critical jet momentum 

required to break down the stratified layer is proportional to the stratified layer interface 

level height. The stratified layer interface level height is translated to reach the ceiling 

since the injected air is supplied directly into the occupied zone. However for all 

experimental airflow rates, the critical jet momentum required to breakdown the 

stratified layer is increased with the growth of the stratified layer height for both cold 

and warm jet. When a high air flow rate is injected (Vj =max), figure 6.3.13 and 6.3.14 

shows that the stratified layer is broken and completely destroyed by the strong 

momentum despite the stratified flow characteristics. 

As discussed earlier, figure 6.3.13 shows that stratified layer interface level h is a very 

important factor since it plays an important role in breaking and destroying the stratified 

layer. 

In the case of warm jet, the high jet momentum directed to floor level raise the interface 

level height upward and combined with the cold air in the occupied zone. This increases 

the temperature in the occupied zone and produced high temperature near the ceiling in 

the upper zone whilst in the case of low jet momentum, the injected air supplied close to 

the ceiling did not have sufficient momentum to go through the stratified layer and 

achieve acceptable mixing. Thus it is stratified in the upper zone producing high 

temperature layer near the ceiling. 
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In order to explain the variation of momentum jet with h, the stratified layer potential 

energy due to gravity is equals to jet kinetic energy. 

(6.3.14) 

(6.3.15) 

and 

2 

M =Q V =AC2 h3 
J J J J 

(6.3.16) 

Where A is the chamber area, Aj is the jet area and Cd is the jet discharge coefficient, 

here C is a coefficient of flow density, spatial geometry and given by equations (6.3 .17). 

(6.3.17) 

Where ~P is the density difference across the stratified layer, 0 is the stratified layer 

thickness, Cd is the discharge coefficient, Pi is the density of the injected air and Aj is the 

jet cross sectional area. 

HenceTCj~15·C, TWj~45·C, A j =9.5 x l0-3 m2
, A=126m2

, and assuming the 

temperature difference across an average of 5 = 1.5m is ~ TI • ~ 7 • C and a 
across 0 

discharge coefficient Cd = 3/4, the value of the coefficient C given by equation 6.3.17 

is CCj ~ 12.5 for cold jet and Cwj ~ 12.82 for warm jet. 

Figures 6.3.13 and 6.3.14 show the relationship between h and both jet velocity Vj and 

jet momentum Mj, as predicted by equations 6.3.15 to 6.3.17 for both types of jet flow. 
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Figure 6.3.13: Critical jet velocity needed to break down the stratified layer with the interface 

level height for both warm and cold jet flow. The line represents the prediction of (6.3.15). 
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For different values of Re numbers used in the experiments, and by usmg the 

momentum jet, figure 6.3.15 shows the critical momentum jet (The minimum initial jet 

momentum required to breakdown the stratified layer) needed to break down the 

stratified layer as a function of Re number. The results show that the momentum flux 

decreases with Re number. A direct comparison between cold and warm jet flow shows 

a lag in the interface level height owing to the temperature difference, whereas the 

results indicated higher values of interface level heights for warm jet. 

Mixed flow using momentum jet 
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Figure 6.3.15: Critical jet momentum needed to break down the stratified layer with Re number for 

botb warm and cold jet flow. 

The experiments have shown that a stratified flow persists in the chamber for a range of 

initial Re numbers from 7000 to about 22000. The initial stages of typical stratified 

flows were shown in (Chapter 5). The incoming jet airflow was injected on downwards 

for a certain distance into the stratified layer. On increasing the initial jet momentum 

above the critical value, there was a flow transition from a stratified flow to a mixed. 

During this transitional period, which occurred in the ranges 0.0 -< M -< (M ) the 
J J crlllcai 

stratified layer interface level height h was observed to be translated upward to reach the 

ceiling. The translation of h from downwards to upwards is affected by the initial 

characteristics of stratified flow. 
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For initial jet momentum greater than the critical values, the jet momentum caused a 

gradually diluted stratified layer leading to an overturning of the layers in the chamber, 

and a mixing mode of flow was observed. This mode of mixing is dependent on the 

relative strength of the initial momentum and the initial flow characteristics. From the 

results in Figures 6.3.13 to 6.3.15, a significant difference between warm and cold jet 

flow is observed. For the same flow conditions, the results show the effectiveness of 

using warm jet to mix the flow is higher than that of cold jet, where the forces of 

momentum and buoyancy are opposed. 

The velocity of the injected air inside the stratified layer is less than that induced inside 

the lower zone due to the high temperature difference so high reduced gravity. Thus, the 

velocity of the injected air decreases quickly when it enters the stratified layer. The 

results show that the critical jet momentum increases with the Buoyancy/momentum 

ratio (RilRe). Figure 6.3.16 shows the critical jet momentum required to breakdown the 

stratified layer as a function of RilRe numbers. 

The power efficiency of breaking the stratified layer in this case is decreased by 

increasing the buoyancy forces of the stratified layer defined by Ri, whilst it is increased 

by increasing the momentum energy of injected air. We can therefore say that the 

stratified layer is easily broken and destroyed by high jet momentum. 

Mixed flow using Cold jet 

2.50 

6. 6. 
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~~ 
fi A 

I - 1.50 

I 
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~ -E Best fit -.""" 6. 
::?1 1.00 

6 
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0.00 0.01 0.02 0.03 
RilRe 

Figure 6.3.16: Critical jet momentum needed to break down the stratified layer with buoyancy to 

momentum ratio RilRe for both warm and cold jet flow. 
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6.3.6 Mixing the Stratified Flow using Inversion Technique 

In reverse cycle air conditioners, "to protect the evaporator from freeze damage, it must 

occasionally run in a defrost cycle where the flow of refrigerant is reversed, so that heat 

from the interior of the house will melt accumulated ice deposits in the outdoor coil. 

This results in uncomfortably cold air being circulated throughout the home during the 

cycle". [PATH (2005)] 

From the above explanation, the definition of stratification phenomenon presented in 

Chapter 1, and the introduction of [Dagestad (1991)] that the flow has stable 

stratification when tlp / tly -< 0, while it has unstable stratification when tlp / tly >- 0, the 

inversion technique was revealed and used in the present work. In this technique the 

stratified flow was mixed by inverting the input airflow suppliers. In this case, the 

buoyant cold layer in the lower zone will loose its buoyancy forces while being heated 

with the hot airflow penetrated at lower levels in the environmental chamber. Also the 

stratified layer will loose its stability and break down due to the drag and tearing of cold 

air penetrated downward from higher levels. The compound effect of these two 

situations will circulate the air in the whole space and disturb the stability of the 

stratified layer to reach a fully mixed flow. 

The analysis carried out to investigate the effect of inversion at input locations on the 

stratified flow characteristics were presented in Chapter 5. A fully mixed flow was 

reached despite the degree of stratification and the temperature difference when the cold 

airflow enters through the upper location, while the hot airflow enters through the lower 

ones. In other words, mixing will be introduced under the effect of inputs overturns 

(inversion of input locations) despite the presence of momentum and buoyancy sources. 

Comparing with the mixing by jet momentum flow, the inversion technique shows 

several major differences: 

In the mixing by momentum jet: 

1. The stratified layer was translated to higher levels before broken down to reach 

fully mixed flow. 

2. Mixing process was introduced by an additional air supply, and so additional 

airflow rates, and more energy consumption. 
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3. Improving pollutant removal efficiency inside the occupied zone occurred by 

increasing the stratified layer interface level height so the height of the occupied 

zone. 

4. For these three purposes, mixing by momentum jet is preferable 

Whereas in the mixing by inversion technique: 

1. The stratified layer was broken down rather than translated to higher levels 

before reaching fully mixed flow. 

2. The flow was mixed without any needs for new air supply or more airflow rates 

with more energy consumption. 

3. Mixing the stratified flow and improving the pollutant removal efficiency inside 

the space was so better. 

4. For these purposes, mixing by inversion technique is preferable. 

Figure 6.3.20 shows the variation of temperature T and temperature gradient dT/dz 

along the vertical height z for two cases of stratified and mixed flow. For stratified case, 

stratification of air causes a vertical temperature gradient dT / dz reaches 4.4 °C/m along 

the vertical height of the chamber whilst it reaches a maximum value of 20°C/m in the 

stratified layer. The degree of stratification for this case is DS= 4.54, (very high degree 

of stratification). 

For mixed flow, Figure 6.3.20 shows an average vertical temperature gradient 

dT/dz = dT/dB = 0.4 ·e/m. For this case, the degree of stratification is DS=l.O, 

(homogenous fully mixed flow). The drop in the temperature gradient is estimated: 

(6.3.19) 

(6.3.20) 

212 



This low degree of stratification results in a fully mixed flow, where the degree of 

stratification decreases by 11 times through the vertical height and 50 times through the 

stratified layer. In this case, the buoyancy forces of low temperature difference (0.4 

°C/m) are not efficient to maintain on the stratified condition. Therefore zones 

disappeared, and a fully homogenous mixed zone is established. In this zone, the air is 

fully mixed and therefore the air temperature and pollutant concentrations are uniform 

throughout the space. 

]' 
(.i 

Temperature Gradient and Temperature Profile for both Stratified and Mixed 
Flow 
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Figure 6.3.20: The temperature profile and temperature gradient for both stratified and mixed flow 

(figure 5.6.1). In thi ca e, the break down of the stratified layer was introduced by inversion the 

input vertical location . 

6.4 Implication of Measurement Resolution 

The data analysis in the present study emphasized the time dependence for temperature 

vertical distribution. For stratified flow, the methodology used in the present work 

focused on short duration releases of (60 s). For mixed flow where the variation is 

faster, the time resolution of concentration measurements was lOs. This resolution 

allowed analysi of the time sequence of temperature distribution. 
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Table 4.1.4 shows the average airflow rates for different flow configurations. The 

increase in airflow rates between low and high flow rates were by factors of 1 and 2 

m3/min. The minimum and maximum measured airflow rate for different configurations 

varied from Im3/min for hot airflow rate to 2m3/min for cold airflow rate. Comparing to 

the whole volume (126 m\ the effects of variations in chamber ventilation rates were 

by factors 0.48 to 0.95 hour -\. These values show that the air age inside the chamber is 

mostly less than an hour. 

Figure 4.4.1 showed the sensitivity of the flow characteristics to the varying of input hot 

airflow rate. In comparison with figure 4.4.2, the sensitivity of the flow to changes in 

cold airflow rate and so the ambient conditions were smaller. The inflow rate was 

within the resolution, of the device approximately, within± 5.7%, as listed in appendix 

A3.4. 

Using temperature profile as a means to determine the flow characteristics h, 8, DS and 

dT / dz estimates for the stratified flow experiments will no doubt include errors which 

cannot be quantified due to the number of uncontrollable flow variables. This method is 

the only means of evaluating. The accuracy becomes better for stratification of higher 

temperature gradient over well controlled experiments, so that the flow characteristics 

could be observed clearly. 

Incoming heat loads can create stratification inside the chamber. To understand this 

process, the standard practice is to measure the air temperature at many intervals along 

the chamber height and around the stratified layer where the rate of change of 

temperature is higher. Eighteen temperature sensors, with a multi-channel data logger is 

used tto record the temperature profile. In these measurements, sensor matching is more 

important than sensor accuracy, whilst the rate of temperature change with depth is most 

interest, not the temperature value itself. The highest quality thermocouples temperature 

sensors are matched to 2.5%. 

6.5 Implication on Ventilation Designs 

Although a great deal of literature on ventilation implications exists, much of these are 

technical writing concerned with the mlxmg of stratified flow to improve the 
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mechanical and removal efficiency. There have been very few studies conducted on the 

implications of ventilation in the presence of stratification. 

As discussed in Chapter 2, studies of energy saving potential in buildings addressing the 

need for the implementation of such an energy efficient system. By determining the 

ways in which the stratified layer can be established and suggesting ways in which this 

stratification can be overcome, the present work has provided the information needed to 

promote the implementation of stratified and mixed flow in ventilation systems. It has 

provided pointes view from which it can develop strategies to increase use of 

stratification applications and to design the ventilation systems with most benefits. 

The purposes of the present work were to investigate the stratified flow characteristics 

perceived by designers and decision makers in the implementation of ventilation 

systems in enclosures and buildings. Taking in consideration the effect of stratification 

on ventilation, heating, and cooling of a building is more efficient and significantly 

reduce energy use. This is important for many reasons: 

• It can save significant amounts of money and energy when used to provide 

enough comfort. 

• It improved the effectiveness of the ventilation system to remove the 

contaminant and heat from the occupied zone and provide the zone with fresh 

au. 

In ventilation applications, stratification interface level height and ventilation airflow 

rates are the two main factors in the design of natural ventilation system [Chen and Li 

(2002)]. Both input and exhaust vertical locations have a significant effect on the flow 

characteristics, and reinforce each other. In Linden's and Skistad's models there are no 

further explanations for the effect of these parameters on the stratified flow 

characteristics. 

From the results, the flow can stratify at certain heights below the exhaust location 

depending on the flow boundary conditions. For this the opening geometries must be 

designed to overcome the phenomenon and exhausted the contaminants and unneeded 

gases with high removal efficiency. However, when the exhaust location is not at the 
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stratified layer height, but at some way below or above, the removal efficiency becomes 

low. In other words, fixed exhaust location is ineffective to exhaust the contaminant. 

The results show that the exhaust location does not alter the position of the interface 

level height. It could be in the location above or below the interface level height. Note 

that the exhaust location does influence the flow rate and the level of the interface. In 

order to improve the effectiveness of ventilation and to save heating energy costs, the 

exhaust location must be where "the exhaust temperature should not exceed the 

temperature in the occupied zone" [Hagstrom et al. (2000)]. 

The inversion of input duct locations is much more efficient in the removal of heat and 

contaminant than the jet momentum. Ventilation strategies employ this vertical 

temperature gradient by maintaining the lower occupied zone at comfort conditions 

while the hotter gases in the upper zone to be exhausted. 

6.6 Summary and Concluding Remarks 

For efficient design and estimation of optimal operating conditions in ventilation 

systems, a series of experimental investigations have been performed to study the flow 

characteristics and the thermal stratification mechanism. The review of previous 

investigations on the stratified flow, revealed the need for more experimental work 

using air-modeling technique. In the research work we have examined the stratified 

flow, in steady state conditions, under the effect of the different major flow parameters. 

The effect of influence of different flow parameters of air supply, such as airflow rate, 

jet momentum and temperature, flow conditions, and the vertical location of input and 

output air flow were investigated. Also the influences the space characteristics, such as 

geometry of the chamber, type of the walls, and distribution of the heat and smoke 

sources were also investigated. The combination of all of these factors will lead to the 

development of tools that aid in designing efficient ventilation systems. 

The kind of information that is typically extracted from the experimental results is 

shown and discussed in Chapters 4, 5 and 6. The results are for the cases mentioned in 

Chapter 3, where the inlet hot and cold flow rates, input and outlet vertical locations are 

the main parameters used to stratify the flow, while the momentum of cold and warm jet 
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flow and the inversion of input locations are the main parameters used to mix the 

stratified flow. The comparisons between experimental results and visualisation are 

analyzed in the present work, also the Richardson number and stratification thicknesses 

calculations were presented to highlight the stratification boundaries and for the 

companson purposes with other researchers such as [Mund (2001)] and [Skisdad 

(1998)]. The general conclusions obtained are discussed, and the areas of special 

attentions are highlighted and the recommended for future work are suggested. 

From the experimental data investigated in the present research work, and the 

discussions and analysis conducted through out the thesis, the following can be 

concluded: 

6.6.1 Effect of Input Airflow Rates and the Direction of Flow 

The effect of input airflow rates on the stratified flow has involved with a number of 

exercises that can be used in ventilation designs and applications. The results and 

conclusions remarks concerned with this will be presented in the following: 

• It was found that for certain ranges of input flow rates, stratification could occur 

for all conditions. 

• It was seen that the hot flow rate has more significant effect on the stratified 

flow than that of cold flow rate. 

• Controlling airflow rate may slightly control the degree of stratification, and 

stratification interface thickness. 

• The moderate airflow rates show better performance of thermal stratification. 

It should be noted that the stratification interface level, the total ventilation flow rate 

and the geometry of the space are, generally, the major concerns in the design of 

ventilation systems with most efficiently. So that the stratification levels must be above 

the occupied zone, and the ventilation flow rate must be within the requirements of 

space occupants. 

A strong stratified region can work as a thermal barrier to decelerate the contaminant 

motion and increase both the temperature in the upper zone and the concentration of the 

smoke along the surface in the occupied zone. Also it could be concluded that there is a 
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slight effect of the flow rate on the stratified layer thickness which can be advantageous 

or disadvantageous to the occupied regions. 

6.6.2 Effect of Input Vertical Locations 

The effects of both input and exhaust locations on the stratified flow characteristics 

were investigated. When the input location is at higher levels (2.0 m), the buoyancy 

forces is increased with a sufficient amount to stratify the flow, whilst for the decreasing 

of input location from 2.0m to 1.0 m, the interface level height is decreasing downward 

to reach the ground, yielding a mixed flow in both zones. The temperature distribution 

in the upper zone is somewhat independent of the location of input location unlike the 

lower zone. The results also show that the level of stratification is increased by the 

increasing of exhaust location. 

From the results it can be seen that the input and exhaust vertical locations reinforce 

each other, while the hot and cold airflow rates do not always reinforce each other, but 

in fact be against each other, due to the buoyancy differences created due to unbalance 

effect of both layers of the stratified region. 

It can be concluded that the stratified flow characteristics are dependent upon the flow 

parameters and the geometry of the space (opening locations). The designing of opening 

heights can be used for controlling the flow characteristics such as mixing or 

maintaining the flow of the stratified layer. 

6.6.3 Effect of Momentum Jet Flow 

The effect of momentum jet airflow on mixing the stratified flow was investigated by 

using an experimental air modelling technique. It is seen that the jet momentum has 

significant influence on the mixing of the flow and the stratified flow characteristics. 

The details indicated that once the momentum was initiated a mixed flow grew in the 

occupied zone above the floor. The height of this zone is a dependent of the stratified 

flow characteristics, and the temperature and momentum of the ceiling jet. 

Comparisons between cold and warm jet flow show that the translation of the stratified 

flow level height and the mixing effectiveness are changed depending on the jet 
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temperature and momentum. Using warm jet airflow, the mixing of stratified flow was 

faster while the removing efficiently was higher. By using warm jet flow, the higher 

values of momentum will destroy the stratified layer and mix it before the interface 

level height reaches higher levels like that of cold jet flow. 
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Chapter 7 

Conclusions 

The main conclusions of the present study are: 

1. Stratified layer interface level height is not located at the exhaust aperture 

height. This finding is contrary to the predictions by Skistad (1998) and Linden 

(1995) and others. 

2. Stratified layer interface level height is dependent on the ratio of airflow rate and 

geometrical effects. 

3. Based on the present experimental results a definition for degree of stratification 

is proposed. This definition gives a measure of the stratified layer within the 

stratified flow. A definition of the degree of stratification has not been 

previously published. 

4. The critical vertical momentum necessary in order to break down a stratified 

layer has been found to depend on the stratified layer interface level height. A 

semi-empirical formula based on the present experimental results has been 

developed to predict the critical vertical momentum for given stratified 

conditions. 

5. Experimental data also demonstrate a ventilation method for increasing the 

occupied zone height without breaking down the stratified layer. 

6. If mixed flow is desired then the cold inflow aperture should be located higher 

than the hot inflow aperture. 

7. Small-scale models, such as those used by Linden (1995) are insufficient for 

predicting stratified layer thickness. The present work demonstrates that the air 

within the stratified layer constitutes the region of contaminants. This 

contradicts the work of Linden (1995), which suggests that the upper layer is the 

region of the contaminants. Consequently the prediction of stratified layer 

thickness is important. 
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8. Based on the present experimental results, the effect of momentum is greater 

than the effect of buoyancy. The time needed to break down the stratified layer 

is considerable less than the time it takes to stratify. 

The experimental work has also demonstrated a number of flow features of stratified 

flow. The features are as follows: 

1 . The present results of different airflow rates and different input exhaust 

locations showed that the temperature difference and the degree of stratification 

can be controlled by controlling the flow parameters. 

2. The different findings between the Skistad's and the present model, showed that 

Skistad's model predicted that the flow will stratify at the level of extract air 

(exhaust height), while in the present model it has seen that the stratification can 

occur at any level between the bottom and the top of the full-scale height. Also 

in the present work it was found that the exhaust vertical location does not alter 

the position of the interface level height. The present investigations have shown 

that there are many important parameters that affect the stratified flow 

characteristics in contrast to [Skistad (1998)]. Linden's model predicts the 

interface level height as a sharp transition between clean and polluted zone, 

which in opposing to the results of [Mundt (1995)]. The present model predicted 

the ventilated space as two clean zones with a polluted-stratified layer in 

between, while the interface level height is suggested to be at the level of 

maximum gradient of temperature profile. 

3. The higher of the input vertical location the higher of the interface level height, 

where different heights of input vertical locations will results in different levels 

of stratification as evaluated by [Hee-Jin and Dale (2001)]. 

4. In the case of cold jet, the injected air is heavier than its domain. With initial 

momentum vertically downward, the momentum and buoyancy forces are 

reinforced one another. In some cases, the negative buoyancy can reach 

minimum values before the momentum decreased to zero. It is due to the hot air 

entrainment from the upper zone. 

5. The using of warm jet is more effective, compared with the cold jet flow, 

because of the effect of bouncy variations on the stratified layer. 

6. More increase in momentum will increase the circulation in the lower zone 

raising the stratified layer upward and mixing the flow. 
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7. The inversion of input locations is an effective process in mixing the flow and 

improving the pollutant removal efficiency inside the space. 

8. At the walls, the temperature difference and momentum are comparatively high 

which decreases the degree of stratification due to disturbances of the walls. 

9. The present results are in agreement with the findings of Linden (1979) which 

identified the needs for input flow rates to remove the mixed fluid from the 

stratified region in order to keep its thickness constant, with a clearer 

phenomenon in the present study. 

10. The results showed that the decrease of the stratified layer thickness, due to the 

momentum transfer from the cold air flow to the stratified layer according to the 

momentum equation, which specifies the density variations effect. The decrease 

is not significant at lower rates. When the cold airflow rate is comparatively 

high, there were higher decrease in the stratified layer thickness and height, 

while the interface level height increases. The reason is: Increasing the source of 

momentum leads to increase mixing due to energy transfer, and as a result the 

stratified layer thickness and the stratified layer height decreased more rapidly 

than for low and moderate cold airflow rates. 

11. Also the results showed that the strongest degree of stratification is for moderate 

airflow rate (Qh =2.0m3 IminQc = 4.0 m3 Imin), as compared with the 

comparatively low and high airflow rates. For low airflow rates the buoyancy 

forces is sufficient to stabilize the flow. For comparatively high airflow rates the 

momentum is high enough to overcome the stabilizing influence of the 

buoyancy forces. 

12. From the comparison with the schematic model suggested by [Skistad (1998)], 

the experimental observations in this work support the Skistad model. Both 

models predicted the stratified flow characteristics using full-scale technique 

with several major differences between the present model and the schematic 

model of Skistad. 

13. According to Skistad's analysis the variation of temperature in the enclosure is 

linear which is in disagreement with the present results and the results of [Mundt 

1995], where the temperature distribution is a function of height, and the 

temperature gradient is maximized under the ceiling where the different flow 

rates of different flow supplies. According to the heat transfer phenomena, the 
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temperature differences always occur due to the heat flux variations inside the 

enclosure. 

14. From the stratified layer interface level height with the effective opening ratios 

A* I H2 and A* LI H for different airflow rates, it is concluded that good 

agreement has been reported between the present results, using air modeling 

technique, and the predictable and experimental data using the salt-bath 

technique of [Linden et al.(l998)]. 

15. The Richardson number provides a measure for the buoyancy forces related to 

the momentum forces effect. The value of Ri was varied between 3.8 to 200, 

which very much spans over a wide range of operating conditions. For high 

values of Ri = 200, while the typical temperature profiles are shown to be 

characterized by the flow parameters, the stratified layer thickness is shown to 

be with significant effect. Upon decreasing the Ri value to 3.8, both cS and 

dT / dz were decrease. Moreover, the overall flow characteristics remain quite 

the same. The variation of dT / dz with Ri is more significant. Also, thinner 

stratified layer thickness is expected to form upon further decrease in Ri value. 

This is referred to the decrease in the ratio of Ri physical mechanism (buoyancy 

to momentum flow ratio), which causes steep temperature gradients in the 

vertical direction of the thermocouple stand near the bottom of the 

environmental chamber. 
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Chapter 8 

Recommendations for Future Work 

In this research, we have established a framework for understanding important 

parameters that affects the stratified flow and its relationships with ventilation 

developments. The work also illustrates how various factors such as input airflow rate, 

openings vertical locations, both cold and warm jet flow and the inversion of input 

locations influenced the characteristics of the stratified flow. 

The work done in this research has opened up a wide range of experimental researches 

in studying the stratified flow, and improving the ventilation systems. In general the 

results obtained can be used as an important tool for the validation of analytical and 

numerical predictions, and to the design of ventilation systems and also it can broaden 

more understanding of flow problems. 

As we mentioned earlier, there are many parameters influencing the stratified flow and 

the degree of stratification and its interfaces. Some of these parameters have been 

studied extensively in this research, such as the effects of input airflow rates, flow 

direction, input and outlet vertical locations on the stratified flow were investigated. 

Also, the effect of momentum jet flow and inversion of input locations on the stratified 

flow characteristics are performed. The combined effect of all these factors was also 

indicated. 

From the revIew and comparison of previous investigations with the present 

experimental investigations, and from conclusions detailed in this Chapter 7, a number 

of suggestions and recommendations were made regarding further development of this 

research as following; 
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• Initial analysis has shown that the effects of these factors are significant and 

must be encountered when dealing with ventilation design. The results are 

encouraging the experimentalists and the theoretician to study these parameters 

extensively in their future work. 

• The need for a CFD simulation models to evaluate the flow parameters 

especially for environmental hazards is necessary. It is therefore essential that 

further additional simulations can be used to be validated with the present 

experimental results, within future work. 

• It is important to study the effect of input flow temperature, diffuser type and the 

grill angle on the stratified flow phenomena. 

• The evaluation of the type of flow and the perturbations, fluctuations and the 

shear stress in the stratified layer can be useful for the stratification 

phenomenon. 

• The effect of exhaust height in the presence of stratified flow on energy 

consumption and contaminant removing efficiency can be studied for predicting 

of the outlet locations for the ventilation systems. 
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Appendix "AI 

Analytical Approach and Steady State Conditions 

The approach used to analyze results is mentioned below. The analysis and the detailed 

results will be reported with the parametric study of the stratified flow. Identifications 

of the parameters affecting the thermal stratification in the environmental chamber are 

listed: 

1. To give a complete study for the stratified flow in ventilated chamber, a number of flow 

parameters affecting thermal stratification have been tested in the present work: 

• Hot airflow rate. 

• Cold airflow rate. 

• Input and output heights. 

• Heat loss. 

2. To investigate the results, the following values and ranges for the parameters affecting 

the thermal stratification are considered. 

Hot air temperature 

Cold air temperature 

Hot air diffuser area 

Cold air diffuser area 

Hot air input heights 

Cold Air input height 

Exhaust height 

Thermocouple distribution 

Thermocouple heights 

Hot and cold flow rates 

1 

From 40-45°C. 

The instantaneous ambient temperature 

0.25 m2. 

0.50 m2. 

1.0 m to 2.5 m in steps of 0.5 m. 

0.25m. 

0.5 m to 2.5 m in steps of 0.5 m. 

As presented in chapter 3 

As listed in table A 1.1 

As listed in table A 1.2. 



Gr 
Ar=-­

Re 25 

6T 

g' 

Thermocouple 
No. 

1 
2 
3 
4 
5 
6 

Height (m) Thermocouple 
No. 

2.80 7 

2.65 8 
2.50 9 
2.35 10 
2.20 11 
2.05 12 

As listed in table A1.3 

As listed in table A 1.4 

As listed in table A1.5 

Based on the equivalent chamber velocity 

and hydraulic diameter as listed in table 

A1.6 

Based on B=5.6 m, H=3.0 m are the width 

and height of the chamber respectively. 

Ranging from 0.001 to 0.013 mls 

As listed in table AI. 7 

Chamber mean temperature 

Based on the hydraulic diameter as listed 

in table A1.8 

As listed in table A1.9 

As listed in table A 1.1 0 

Height (m) Thermocouple Height (m) 
No. 

1.90 13 1.00 
1.75 14 0.85 
1.60 15 0.70 
1.45 J6 0.55 
1.30 J7 0.40 
1.15 18 0.25 

Table A I.J: The thermocouples numbers and heights on the measuring stand as presented in 

chapter 3, (figure 3.3. J). 
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Class of flow Low Moderate High 

Cold airflow rate, m3/min 0.0, 2.0 4.0 6.0, 8.0 

Hot airflow rate, m3/min 1.0, 2.0 3.0 4.0, 5.0 

Table A1.2 : shows the ranges of hot and cold airflow rates that be classified into three c1assis 

low, moderate and high. The calculations were based on, hot air diffuser area of 0.25 m2 and 

cold air diffuser area of 0.50 m2
• 

Qc\Qh m3/min 1.00 2.00 3.00 4.00 5.00 
0.00 46.72 31.24 6.65 1.25 0.67 

Ri 2.00 200.00 145.21 19.00 3.80 1.14 
4.00 75.20 150.00 97.60 16.18 2.89 
6.00 23.10 133.96 150.00 97.71 9.09 
8.00 12.88 27.47 123.83 140.00 86.45 

Table A1.3 : shows the ranges of Ri number based on the input velocities, input temperatures and 

based on hot air diffuser area of 0.25 m2 and cold air diffuser area of 0.50 m2. 

Qc\Qh m3/min 1.00 2.00 3.00 4.00 5.00 
0.00 0.1463 0.1789 0.3877 0.8936 1.2250 

Fr 2.00 0.0707 0.0830 0.2294 0.5128 0.9367 
4.00 0.1153 0.0816 0.1012 0.2486 0.5883 
6.00 0.2080 0.0864 0.0816 0.1012 0.3317 
8.00 0.2786 0.1908 0.0899 0.0845 0.1075 

Table AI.4: shows the ranges of Fr number based on the input velocities, input temperatures 

and based on hot air diffuser area of 0.25 m2 and cold air diffuser area of 0.50 m2 • 

Qc\Qh m3/min 1.00 2.00 3.00 4.00 5.00 
0.00 7813 15625 23438 31250 39063 

Re 2.00 23438 31250 39063 46875 54688 
4.00 39063 46875 54688 62500 70313 
6.00 54688 62500 70313 78125 85938 
8.00 70313 78125 85938 93750 101563 

Table AJ.5: shows the ranges of Re number based on the input velocities based on hot air 

d iffuser area of 0.25 ml, cold air diffuser area of 0.50 m2, and the hydraulic height of 1.5m 
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Hydraulic diameter (m) 3.91 

Qc\Qh ml fmin 1.00 2.00 3.00 4.00 5.00 
0.00 2424 4849 7273 9697 12122 

Re 2.00 7273 9697 12122 14546 16970 
4.00 12122 14546 16970 19395 21819 
6.00 16970 19395 21819 24244 26668 
8.00 21819 24244 26668 29092 31517 

Table A1.6: shows the ranges of Re number based on the equivalent velocity and hydraulic 

diameter in the environmental chamber. 

Hydraulic diameter (m) 3.91 

Qc\Qh ml fmin 1.00 2.00 3.00 4.00 5.00 
0.00 2.05E+11 5.49E+11 2.63E+11 8.80E+10 7.32E+10 

Gr 2.00 2.37E+11 6.38E+11 3.34E+11 1.50E+11 8.01 E+10 
4.00 3.30E+11 7.12E+11 4.29E+11 2.84E+11 1.14E+11 
6.00 4.0SE+11 5.88E+11 5.19E+11 4.29E+11 1.60E+11 
8.00 5.09E+11 4.83E+11 5.44E+11 4.61 E+11 3.80E+11 

Table A1.7: shows the ranges of Gr number based on the reduced gravity g' mt S21isted in 

table A1.l0 and the chamber hydraulic diameter. 

Hydraulic diameter (m) 3.91 

Qc\Qh mltmin 1.00 2.00 3.00 4.00 5.00 
0.00 709.12 335.29 58.32 9.50 4.52 

Ar 2.00 52.62 68.88 20.63 5.89 2.14 
4.00 20.42 27.90 11.43 5.43 1.62 
6.00 10.82 11.23 7.38 4.69 1.38 
8.00 7.24 5.27 4.68 3.20 2.15 

Table AJ,8: show the ranges of Ar number based on the definition of Archimedes 

Gr . . 
number Ar = --, and the values of Re and Gr were hsted In tables AJ,6 and A1.7 

Re 2.5 

respectively. 

Qc\Qh m3 fmin 1.00 2.00 3.00 4.00 5.00 
0.00 4.15 11.10 5.32 1.78 1.48 

Temp. Diff. 2.00 4.80 12.90 6.75 3.04 1.62 
4.00 6.68 14.40 8.67 5.75 2.31 
6.00 8.21 11.90 10.50 8.68 3.23 
8.00 10.30 9.76 11.00 9.33 7.68 

Ta ble AJ,9: Temperature difference, at the measuring stand across the chamber at a fixed axial 

location of (3.75,2.8) m and different values of hot and cold air flow rates. 
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Qc\Qh m"'3/min 1.00 2.00 3.00 4.00 5.00 
0.00 0.13 0.35 0.17 0.06 0.05 

g' mls"'2 2.00 0.15 0.41 0.21 0.10 0.05 
4.00 0.21 0.46 0.27 0.18 0.07 
6.00 0.26 0.38 0.33 0.28 0.10 
8.00 0.33 0.31 0.35 0.30 0.24 

Table A1.l 0: Reduced gravity g'm / S2 at the centre of the chamber for various values of cold 

and hot airflow rates, and based on the temperature difference listed in table AI.9. 

3 To evaluate the effect of flow parameters mentioned above on the stratified flow 

characteristics. The results are analyzed along with the following lines. 

• A verage temperature difference was estimated from the difference between 

the floor and ceiling temperature readings rather than the hot and cold air 

temperatures, because of different experimental input temperatures. 

• Stratification temperature profiles were plotted in terms of the dimensionless 

(T - T, ) I . I h . h ( . h . temperature ( ) a ong a vertIca elg t Wit ~ and T2 bemg 
T2 -T, 

respectively the temperatures at the floor and the ceiling of the chamber) and 

a dimensionless height!:...- . 
H 

• Interface level height was the point on the height axis at which the 

temperature profile has a maximum gradient. [Bouzinaoui et al (2005)] 

• Stratified layer thickness was the height difference between the start of 

concave up and start of concave down on the plot of temperature profile. 

• Degree of stratification was estimated from Ri or the degradation of 

temperature profile with the vertical axis, dT . 
dz 

• Uniformity of the stratified region was estimated through a number of tests 

were done at different locations in the direction along and across the 

direction of the flow. 

4 To get good quality results, the flow was characterized by both temperature and smoke 

visualization, and the measurements were taken over a period of time when the flow 

attaining steady state conditions. 
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5 The above parametric numbers and the values listed in tables: A 1.1 and A 1.2 were 

selected based on theoretical background explained in chapter 2 and preliminary tests 

done in the environmental chamber, using air modeling techniques explained in Chapter 

3. 

AI.3 Steady state conditions 

All the measurements were taken at steady state conditions. The time needed to reach 

this condition was varied from experiment to experiment. It depends, mainly, on the 

surroundings settings, weather fluctuations, measuring situations and flow conditions 

The typical time to reach steady state in our case was about (2-hours). 

A steady (isothermal) temperature lines are shown in Figure A 1.1. It shows the 

measuring temperatures of thermocouple stand as time advances. It is for the last five 

readings after the flow reaches the steady state conditions. The measured temperature 

used, in investigations, was the average of these five readings. 

Figure A 1.1 shows the deviations of the typical temperature distribution lines with time 

comparing with ideal steady state lines that can't be reached in labs. As can be seen in 

the figure, the deviations are visible near the top and bottom of the chamber, and non 

visible in between. Over a period of time (4 minutes), it can be shown that the 

isothermal line degradation e = dT is limited to O.I°C/min. The deviations were large 
dt 

near the ceiling and the floor due to heat transfer, heat loss to the ambient, thermal 

diffusion and mixing. The deviation obtained is too small compare with the accuracy in 

the temperature measurements of 0.3 °C. For this, the measurements are found 

acceptable for steady state. 
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X=3.7S m, Y=2.8 m, Hh=2.0 m, Hex=1.S m, Qh=1.0 mA 3/min 
Qc=O.O mA 3/min 

Z-direction (m) 

38.5 ,--------------------------, 

38.0 

37.5 

37.0 

36.5 
o 
CP 
~ 36.0 -IV ... 
~ 35.5 

~ 35.0 

34.5 

34.0 

33.5 

----------------~---*-----
T 

33.0 ..L------r--------r--------,-------.., 
20:36:58 20:37:41 20:38:24 20:39:07 20:39:50 

Time 

~ 
- 2.8 

- 2.65 

2.5 

- 2.35 

- 2.2 

- 2.05 

- 1.9 

- 1.75 

- 1.6 

1.45 

1.3 

1.15 

1 

0 .85 

0.7 

0.55 

- 0.4 

- 0.25 

Figure A1.I: gives the isothermal plots as time advances when attaining steady state 

conditions. 
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AppendixA2 

Details of data 

For the cases listed in Chapter 5 and studied in sections 5.4 and 5.5, 

Appendix A2 listed the details of data shown in 

Figures A2.4.l to A2.4.9 and Figures A2.5.1 to A2.5.25 

that discussed in 

Chapter 5. 

1 



Exp12cjet 

Height (m) 

0.0 1.0 2.0 3 .0 
25 .0 

~::::::~ 
-+-0.00 

35 .0 _ 0.38 

0.76 

0 45 .0 
It) 

::::::::~ 
~1 . 14 ... 

CI) 
I/) 

~1 . 52 :t: 
0 
I/) 55 .0 
CI) 

;::~:-~ -:;:~ 
-+-2.28 

; 
e 

-+-3.04 c. 
CI) 

65 .0 .~ 
I/) - 4.57 
I/) 

~ 
CI) 
Co> 
(.) - 6.09 ::l 

C/) 75 .0 
0 7.61 
~ 
::l ... 9.13 l!! 85.0 
CI) 
c. 
E 10.65 
CI) 

~ 

95 .0 ~12. 18 

13.70 

105 .0 -+- 15.22 

Figure AlA.1: Illustrates vertical temperature profiles for various cold jet speeds. 
The flow was stratified at (Q b = 1.0 m 3 / min ) hot airflow rate and 

(Q c = 2.0 m 3 I min ) cold airflow rate at a locations of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 

2 



Exp14cjet 

Height (m) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

25.0 

:::::::~ .. ~ -
~O. OO 

_ 0.38 
35.0 

0.76 ......... 
~1 . 14 

45.0 

-::::::::~ u ~1.52 
II) -c:.I 

~ -+-2.28 
'-
0 55.0 
c:.I 

<:: -+-3.04 
0 
100 
Q. 

- 4.57 c:.I 

.~ 65.0 
CIl 

= ~ 
CIl - 6.09 c:.I 
Col 
Col 
::I 

en 7.61 
U 75.0 -- - - - .-
c:.I 

9.13 100 
::I -co: 
100 10.65 c:.I 
c. 

85.0 e 
c:.I ..... 12.18 E-o 

13.70 
95.0 

-+-15.22 

105.0 - - -

Figure A2.4.2: H1ustrates vertical temperature profiles for various cold jet speeds. The 

flow was stratified at (Q h = 1.0 m 3 / min) hot airflow rate and 

(Q r = 4.0 m 3 / min ) cold airflow rate at a locations of 2.0 and 1.5 m respectively at 

the centre of environmental chamber. 
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Figure A2.4.3: Illustrates vertical temperature profiles for various cold jet speeds. 

The flow was stratified at (Q h = 1.0 m 3 / min) hot airflow rate and 

( Q < = 6 .0 m 3 / min ) cold airflow rate at a location of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 
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Figure A2.4.S: Illustrates vertical temperature profiles for various cold jet speeds. 

The flow was stratified at (Q h = 3.0 m 3 I min) hot airflow rate and 

(Q c = 4.0 m J / min ) cold airflow rate at a location of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 
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Figure Al.4.S: Illustrates vertical temperature profiles for various cold jet speeds. 

The flow was stratified at (Q h = 3.0 m 3 I min) hot airflow rate and 

(Q c = 4.0 m J / min ) cold airflow rate at a location of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 
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Figure A2.4.6: Illustrates vertical temperature profiles for various cold jet speeds. 

The flow was stratified at (Q h = 3.0 m 3 / min) hot airflow rate and 

(Q < = 6.0 m J / min ) cold airflow rate at a locations of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 
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Figure A2.4.7: Illustrates vertical temperature profiles for various cold jet speeds. 

The flow was stratified at (Q h = 2.0 m 3 / min) hot airflow rate and 

( Q < = 2.0 m J / min ) cold airflow rate at a location of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 
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Figure Al.4.8: Illustrates vertical temperature profiles for various cold jet speeds, 

The flow was stratified at (Q h = 2.0 m 3 / min) hot airflow rate and 

( Q < = 4.0 m 3 / min ) cold airflow rate at a locations of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 
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Figure A2.4.9: lIIustrates vertical temperature profiles for various cold jet speeds. 

The flow was stratified at (Q h = 2.0 m 3 / min) hot airflow rate and 

( Q c = 6.0 m 3 / min ) cold airflow rate at a location of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 
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Figure A2.S.1: IIIu trates vertical temperature profiles for various warm jet speeds. 

The flow was stratified at ( Q h = 1.0 m 3 / min) hot airflow rate and 

(Q c = 2.0 m 3 / min ) cold airflow rate at locations of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 
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Figure A2.S.2: Illustrate vertical temperature profiles for various warm jet 

speeds. The flow wa stratified at (Q h = t.O m 3 / min ) hot airflow rate and 

(Q c = 4.0 m 3 / min ) cold airflow rate at locations of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 
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Figure Al.5.3: Illustrates vertical temperature profiles for various warm jet 
speeds. The flow was stratified at (Q h = 1.0 m 3 I min ) hot airflow rate and 

(Q c = 6.0 m 3 / min) cold airflow rate at locations of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 

13 



Exp32wjet, Tj = 39.7 C 

Height (m) 

0.0 1.0 2.0 3.0 
25.0 -,-0.00 

_ 0.38 
35.0 

0.76 

0 
~1.14 

I.t) 45.0 -Q) 
f/) -.-1.52 --0 
Q) 55.0 - -+-3.04 
0 
10.. ............. ~~ ~ Q. 

Q) -+-4.57 
> 65.0 -- -- I. . .. 
f/) 

+IIIIII ~I f/) 
- 6.09 Q) I I I I I I I (,) 

(,) -:::::J 
75.0 ----en -- - - 7.61 - -" 0 

Q) 

9.13 10.. 

:::::J - 85.0 IV 
10.. 
Q) 10.65 Q. 

E 
Q) 

I- 12.18 
95.0 

~13. 70 

105.0 15.22 

Figure A2.5.4: Illustrates vertical temperature profiles for various warm jet 

speeds. The flow was stratified at (Q h = 3.0 m 3 / min ) hot airflow rate and 

(Q < = 2.0 m 3 / min) cold airflow rate at locations of 2.0 and 1.5 m 

respectively at the centre of environmental chamber 

14 



Exp34wjet 

Height (m) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
25 .0 +-__ "___--i.. __ ....... __ ~ ___ "___ ..... 

u 
&I) 

~ -Q) 

35.0 

45 .0 

~ 55.0 
I/) 

~ 
I;:::: 
o 
~ 

Q. 
Q) 65 .0 
.~ 
I/) 
I/) 
Q) 
u 
u 
~ 

en 75 .0 
u 
Q) 
~ 

~ -IV 
~ 

8. 85 .0 
E 
Q) 
I-

95.0 

~:::: • = : ::::::::: 

~)()()( )()()( 
~ )()()OO( )()(X 

)t( )I( )I( )101( )I( )I( )IE ~ 
)I()I()I()I()I()I()I(!*: .......... 

--- ....... . 
+",1 1 1 1 1 1 I-t-I I I I I I I I I 

105.0 - -- -- ---~ 

-+-0.00 

___ 0.38 

0.76 

-*- 1.14 

___ 1.52 

-+-3.04 

~4. 57 

- 6.09 

- 7.61 

9.13 

10.65 

12.18 

-*- 13.70 

15.22 

Figure A2.5 .. 5: Illustrates vertical temperature profiles for various warm jet 

speeds. The flow was stratified at (Q h = 3.0 m 3 / min) bot airflow rate and 

(Q c = 4.0 m 3 / min) cold airflow rate at locations of 2.0 and 1.5 m 

respectively at the centre of environmental chamber. 
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Figure A2.5.6 : Illustrates vertical temperature profiles for various warm jet 
speeds. The flow was stratified at (Q h = 3.0 m 3 / min ) hot airflow rate and 

(Q c = 6.0 m 3 / min ) cold airflow rate at locations of 2.0 and 1.5 m 

respectively at the centre of environmental chamber 
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Figure Al.5.7: IIlu trate ertical temperature profile for variou warm jet peed. 

The flow wa tratified at (Q h = 2.0 m 3 / min ) hot airflow rate and 

(Q c = 2.0 m 3 / min) cold airflow rate at location of2.0 and 1.5 m respectively 

at the centre of environmental chamber. 
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Figure A2.5.8: (JIustrates vertical temperature profiles for various warm jet speeds. 

The flow was stratified at (Q h = 2.0 m 3 / min ) hot airflow rate and 

( Q c = 4.0 m 3 / min ) cold airflow rate at locations of 2.0 and t.5 m respectively 

at the centre of environmental chamber. 
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Exp26cje~ Tj = 38.6 C 

Figure A2.S.9: IIlu trate vertical temperature profiles for various warm jet speeds. 

The flow was tratified at (Q b = 2.0 m 3 / min) hot airflow rate and 

(Q ( = 6.0 m 3 / min) cold airflow rate at locations of 2.0 and 1.5 m respectively 

at the centre of environmental chamber. 
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Figure A2.S.10: Comparison of interface level height with the jet speed, at hot airflow 

rate of Q h = 1.0 m 3 / min and different cold airflow rates 

(Q < = 2, 4 and 6 m 3 / min ) in the environmental chamber. 
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Figure A2.S.11: Comparison of interface level height with the jet speed, at hot airflow 

rate of Q h = 2.0 m 3 / min and different cold airflow rates 

( Q < = 2, 4 and 6 m 3 / min ) in the environmental chamber. 
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Figure A2.S.12: Comparison of interface level height with the jet speed, at hot airflow 

rate of Q b = 3.0 m 3 / min and different cold airflow 

(Q < = 2, 4 and 6 m 3 / min ) in the environmental chamber. 

Warm Jet at Qc= 2.0 m3/min 

3.0 ...-----------------=-------=---. 
E 
:: 2.5 
.:::. 
Cl 
'(j) 2.0 
.:::. 
Cii 1.5 
~ 
(I) 1.0 
(,,) 

~ 
.s 

0.5 

~Qh=1 m"3/min 

~Qh=2 m"3/min 

-o-Qh=3 m"3/min 
c 0.0 L------,---,-----r--~==::::::::;====;:::::=~ 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 

Vj (mIse c) 

rates 

Figure A2.S.13: Comparison of interface level height with the jet speed, at cold airflow 

rate of Q < = 2.0 m 3 / min and different hot airflow rates OQh = 1, 2 and 3 m 3 /min 

in the environmental chamber. 
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Figure A2.5.14: Comparison of interface level height with the jet speed, at cold airflow 

rate of Q ( = 4.0 m 3 / min and different hot airflow rates (Qh = 1, 2 and 3 m3 / min) 

in the environmental chamber. 
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Figure A2.5.15: Comparison of interface level height with the jet speed, at cold airflow 

rate of Q ( = 6.0 m 3 / min and different hot airflow rates (Qh = 1, 2 and 3 m3 / min) 

in the environmental chamber. 
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Figure A2.S.16: Temperature visualization showing the tratified flow with initial cold 

and hot airflow rates of 2 and 6 m3 fmin, Richardson number of 2.0 and Reynolds 

number of2008, and the effect of warm jet flow of (Vj = 3.0 m/ sec). 

Figure A2.S.17: Temperature vi ualization showing the translation of stratified flow with 

(initial cold and hot airflow rates of 2 and 6m3 fmin, Ri of2.0 and Reynold number 

of 2008) from warm jet flow of (Vj = 3.0 m/ sec) to (Vj = 6.0 m/ sec) . 
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Figure A2.5.18: Temperature vi ualization showing the translation of stratified flow with 

(initial cold and hot airflow rate of 2 and 6 m3/min, Ri of 2.0 and Reynolds number 

of 2008) from warm jet flow of(Vj = 6.0 m/ sec) to (Vj = 9.0 m/ sec). 

Figure A2.5.19: Temperature i ualization howing the translation of stratified flow with 

(initial cold and hot airflow rate of 2.0 and 6.0 m3/min, Ri of 2.0 and Reynolds 

number of2008) from warm jet flow of(Vj = 9.0 m/sec} to (Vj = 12.0 m/sec). 
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Figure A2.S.20: Smoke visualization showing the stratified flow with initial cold and hot 

airflow rates of 2.0 and 6.0 m3 /min, Richardson number of 2.0 and Reynolds 

number of2008, and the effect of warm jet flow of (Vj = 0.0 m/sec). 

Figure A2.S.21: smoke visualization showing the stratified flow with initial cold and hot 

airflow rates of 2.0 aod 6.0 m3 /mio, Richardson number of 2.0 and Reynolds number of 

2008, and the effect of warm jet flow of (Vj = 3.0 m/ sec). 
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Figure A2.S.22: moke vi ualization showing the tratified flow with initial cold and hot 

airflow rate of 2.0 and 6.0 mJ fmin, Richard on number of 2.0 and Reynold number 

of2008, and the effect of warm jet flow of(V j = 6.0 m/sec). 

Figure A2.S.23: moke vi ualization showing the tratified flow with initial cold and hot 

airflow rate of 2.0 and 6.0 m3/min, Richard on number of 2.0 and Reynold 

number of2008, aDd the effect of warm jet flow of(Vj = 9.0 m/ sec). 
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Figure Al.5.24: Smoke visualization showing the stratified flow with initial cold and hot 

airflow rates of 2.0 and 6.0 m3 imin, Richardson number of 2.0 and Reynolds 

number of2008, and the effect of warm jet flow of (Vj = 12.0 m/ sec). 

Figure A2.5.25: Smoke visualization showing the stratified flow with initial cold and hot 

airflow rates of 2.0 and 6.0m3 imin, Richardson number of 2.0 and Reynolds 

number of2008, and the effect of warm jet flow of(Vj = 15.0 m/sec). 
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Appendix A3.1 

Agilent 34970A Data Acquisition/Switch Unit 

~ ....... ::-... -;......-. .... 
-- l ' ) '-:. -., I I .' ' .--' • - .- ~ - ._. 

Agilent BenchLink 34970A Data Acquisition/Switch Unit 

Eexperimental set-up described in chapter 3 consists of a data acquisition system and a 

personal computer. The data acquisition system used was the Agilent 34970A Data 

Acquisition/Switch Unit manufactured by Hewlett-Packard (palo Alto, CA) (Appendix 

A3.l), connected to a personal computer, with the corresponding computer software 

entitled Agilent Benchlink Data Logger. 

The Agilent data logger has 60 channels for data input. For this experiment, 20 channels 

were configured to type K thermocouples. The software allowed the data to be read and 

plotted in real time on the computer screen. An acquisition time of 10 and 60 seconds 

were chosen. The 20 channels used do not take data at the same instant in time, but 

rather one after the next. Temperature and time data could then be exported between 

tests to appropriate spreadsheet files on a personal computer using an RS232 60601 

cable for more analysis. 
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Price and performance beyond compare 
Go ahead and compare the Agilent Technologies 
34970A Data Acqui ition witch Unit with other 
DAC system currently a ailable. You 'll find it 
hard to come up with a y tern that offer the 
powerful measurement performance, flexibility, 
and ease of u e of the 34970A-e en in s stems 
costing three to five time as much. 

How did we manage to pack 0 much performance 
into such a low-cost in trument? We borrowed tech­
nology developed for our top-of-the-line products 
and put it into a package that cu as embly time, 
incorporate custom ICs to reduce parts count, and 
simplifie production testing. That mean it co ts 
us less to make. The resul ? You pend Ie with­
out sacrificing quality or performance. 

What can you expect from a data acquisition 
system that's this affordable? 
Measurements you can trust 
We took the measurement engine from our be t­
selling bench top DMM and embedded it in ide a 
3-slot card cage. You get the benefit of pro en Agilent 
measurement performance, univer al inpu with 
built-in signal conditioning, and modular flexibility, 
all in a low-cost, compact data acqui ition package. 
The 34970A feature 6 1

/_ digits (22 bi ) of re olution, 
0.004% basic dcV accuracy, and ultra-low reading 
noise. Combine that with can rate of up to 250 
channels/ ee, and you've got the peed and accuracy 
you need to get the job done right the first time. 

Powerful flexibility to get your job done 
Whether you need to measure temperature, 
ac/ dc volts, resistance, frequency, or current, the 
34970A can handle it. The internal autoranging 
DMM directly measure 11 different function , 
eliminating the need for expen ive external signal 
conditioning. And our unique de ign allow com­
plete per-channel configurability for maximum 
flexibility and quick, easy et up. It' like having 
an independent, high-performance DMM b hind 
each channel. 

Custom configurations that grow with you 
Three module slots and eight switch/control 
module allow you to customize the 34970A to 
meet your unique requirements. Buy only what 
you need-and add more modules later as your 
application grows. 

Unequaled ease of use 
From the implified configuration procedures, 
to the self-guiding front panel interface, we put 
in extra time and energy to save yours. Simple 
thing like on-module screw-terminal connector 
built-in thermocouple reference junctions, well- ' 
organized user documentation full of examples 
and hints, and a tandard Getting Started kit that 
will have you making measurements 15 minutes 
out of the box all add up to increa ed productivity, 
whether you use the instrument every day or 
only now and then. 

Free software to save you time and money 
Now you don't have to spend your valuable time 
writing or configuring software. HP BenchLink 
Data Logger software gives you a familiar Microsoft 
Windows interface for test configuration and real­
time data di play and analysis. Even better, this 
full-featured data logging application is included 
free with every standard Agilent 34970A. 
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More power and flexibility 
than you ever imagined you could afford 

Intuitive front panel: task-oriented. 
self-guiding menus 

50k readings of non-volatile 
S'/ ,-digit (22-bit) internal ' ~~ ______________________ ...... _'"'""" memory holds data when 
OMM measures 11 functions without, power is removed 
external signal conditioning --------~----~----

Monitor display 
mode lets you 
keep an eye on 
tests in progress 

Scaling function for 
converting raw inputs 
into user-defined units 

3-slot mainframe 

HI/LO alarm limits on each input 
channel. plus 4 TIL alarm outputs 

3-year warranty to protect your investment 

offers up to 96 matrix crosspoints or 
120 single-ended channels 

B switch and control 
plug-in modules to 
choose from 

4 

Battery-backed real-time clock for pacing 
scans and timestamping readings 

HP Bench Link Data Logger 
software included; 

drivers available for Agilent VEE and 
National Instruments LabVIEwe 

Built-in GPIB and RS-232 interfaces 



The Agilent 34970A offers unequaled versatility 
for your data acquisition applications 
In the past, you had to make a choice. On the one 
hand, you could choose the simple operation and 
low cost of a data logger. On the other hand, you 
had the flexibility and higher performance of 
a modular data acquisition system. The Agilent 
34970A Data Acquisition/ Switch Unit gives you 
the best of both worlds: a simple user interface 
with low per-channel cost, modular flexibility, 
and impressive measurement performance. 

Whether you're an R&D engineer working on char­
acterizing your latest design, or a manufacturing 
engineer building a test system or troubleshooting 
a process, the 34970A Data Acquisition/ Switch 
Unit offers the best combination of price and meas­
urement performance. 

It's a data logger: 
Configured with a 20-channel relay multiplexer, 
the 34970A becomes a powerful, low-cost data 
logger for simple characterization applications­
one that's quick to set up and easy to run. For 
more information on using the 34970A for data 
logging applications, see page 6. 

It's a data acquisition front-end: 
The 34970A is an automated test system with 
excellent measurement performance-it's got the 
accuracy, resolution, and speed you need. See 
page 8 for application information. 

It's a switch system: 
Order the mainframe without the internal DMM 
and you've got an even lower cost, high-quality 
signal routing solution. See page 10 for details. 
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An easy-to-use data logger for monitoring 
and characterization applications 
Data loggers are used to monitor multiple signals 
(temperature, voltage, etc.) over extended periods 
of time to identify irregularities. Example applica­
tions include environmental chamber monitoring, 
component inspection, benchtop testing, process 
troubleshooting, and temperature profiling. 

The Agilent 34970A is easy to use for a multitude 
of data logging and monitoring applications, either 
stand-alone or with a computer. Its flexible, modu­
lar design makes it calable from 20 to 120 chan­
nels, and lets you add actuator, digital 110 , and 
analog output channels for simple control. Its small 
size and ruggedized features make it perfect for 
portable applications, and its small footprint makes 
it ideal for cramped bench top testing. Standard 
GPIB (IEEE 488) and RS-232 interfaces let you pro­
gram the instrument if you wish to automate tests. 

Simplify your data gathering with HP BenchLink 
Data Logger software 
Do you want PC-based data logging capability, 
but don't want to spend hours programming? 
HP BenchLink Data Logger software is the 
answer. This Windows®-based application is 
designed to make it a snap to use your PC for 
gathering and analyzing measurements. Use 
it to set up your test, acquire and archive meas­
urement data, and perform real-time display 
and analysis of the incoming measurements. 

A familiar spreadsheet environment makes it 
easy to configure and control your tests . And 
a rich set of colorful graphics provides many 
options for analyzing and displaying your data­
all with point-and-click ease. Set up multiple 
graphics using s trip charts, histograms, X-Y 
scatter charts, alarm lights, and more. And of 
course you can use HP BenchLink Data Logger 
to easily move data to other applications for 
further analysis, or for inclusion in your presen­
tations and reports. 

Better measurements with fewer hassles 
Tired of putting up with the mediocre measure­
ment performance you get with most data loggers 
or plug-in data acquisition boards? The 34970A 
offers 6 '/2 digits of resolution and 0.004% basic 
I-year dcV accuracy. 

.-, 
~ 

-~ .- ~= ~ · ~" • CooiIIIoRoo 

~ • • 
~ · -II 0-'_ '-"" 
~ · '-.-..'1 · · '_1)1;1_ 

~ .. -e-: r ::= ~ : ~-.;-. " Fo: N • 

~ ~ :: ~,.-.. 
~-.. 

iJ ~ [11[""","'001 . r "'-~ 
~:.. -..... -,. 

, . - ..... - ..... - ..... - ..... - ..... -
- ..... - " ... - ..... - ..... -- ..... 

-.-..... rD I. 
_ 311 

~ :lit 
,IoI.,t ::J 11 

- 011 
0-.0 0 " 
l>oIoo..I 1311 
CIM.- ::J II 
0-. :J '.I 
0...... 0 II 
0-.... 011 

" ~ 3" 
0-.. u If 
00l..tI A,. 
u.- 0 '0 

-~ t..... .. ~ 
::: ~- ;~o ~:. "-I 
I~ _ or u .. I' _ JI ..... .. ~ 

.. * 
en c 1403,. IOU ..... 

II 311 00 U 
II 311 .. U 
.., Of .0 U 
•• _ 311~'" 

::bo. .... 
II "* 1)11" 41 cu _ 1)11 U U 

........ 1)11 QI U 

CJ I.e II _ 

or" 

I 



And the 34970A measures and converts 
11 different input signals: 

• temperature with thermocouples, RIDs, 
and thermistors 

• dc and ac volts 
• 2- and 4-wire resistance 
• frequency and period 
• dc and ac current 

What's more, each channel is independently config­
urable. This means you can configure channel 1 
for dcV, channel 2 for a K-type thermocouple, and 
channels 3 and 13 for a 4-wire RID measurement­
all on the same module, all in a single scan. For 
custom linear conversions, use the Mx+8 scaling 
function on any channel. You can even display a 
custom 3-character engineering label like RPM or 
PSI to identify your measurement units. 

Veraatile alarms 
Alarms are available on a per-channel basis as 
well. Enter a high limit, a low limit, or both. The 
34970A compares each reading to its limits and 
flags any out-of-range measurements. You can 
assign one of four TIL alarm outputs to any input 
channel to trigger external alarm lights, sirens, 
or send a ITL pulse to your control system, all 
without a PC connected. 

Scanning made simple 
The 34970A automatically builds a scan list that 
includes all configured inputs (even digital inputs 
from the Agilent 34907 A multifunction module) in 
ascending order by channel number. You can pace 
scans by setting the 34970A's internal timer for 
automatic scanning at a specific interval, by manu­
ally pressing a front-panel button, or by sending a 
software command or external TIL trigger pulse. 

Monitor any input 
A special display mode monitors a selected input 
channel, continuously updating the display with 
new readings-even during a scan. It's great for 
keeping an eye on a key input, or for troubleshoot­
ing your system before a test. 

Nonvolatile memory adds convenience. portability 
All readings are automatically time-stamped and 
stored in a nonvolatile 50,OOD-reading memory­
enough memory to hold more than a week's worth 
of data (20 channels scanned every five minutes). 
The nonvolatile memory holds your data even after 
power is removed, so you can use the 34970A to 
collect data at a remote location for later upload­
ing to a PC. And because the nonvolatile memory 
also holds your system configuration, if you lose 
power in the middle of a test, the 34970A resumes 
scanning when power is returned. 

Data LOlling Feature Checklist 
• From 1 to 120 channels of analog input 
• Measurements include dc volts, ac volts, 

thermocouple, thermistor and RTD tem­
perature measurements, 2- and 4-wire 
Ohms, dc current, ac current, frequency, 
and period 

• 61/2 digits (22 bits) of resolution with 
0.004% basic I-year dcV accuracy 

• 50k reading nonvolatile memory including 
timestamp 

• Scaling and alarms available on each 
channel 

• Full-featured front panel for stand-alone 
configuration, troubleshooting, and data 
viewing 

• HP BenchLink Data Logger software for 
configuration and data analysis 

• Nonvolatile storage for five complete 
instrument states 
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A powerful, flexible data acquisition system 
for automated test 
The 34970A gives you the resolution, accuracy, 
repeatability, and speed you've come to expect 
from an Agilent data acquisition system. It provides 
the measurement muscle you need, along with 
signal routing and control capability, in a flexible, 
modular format that can grow and change to 
match your varied applications. 

Powerful measurements 
The internal 6'/2-digit DMM brings the power and 
performance of a world-class stand-alone DMM to 
the 34970A, but at a fraction of the cost and in 
a fraction of the space. It's as accurate as the best 
bench DMM available: 0.004% basic I-year dcV 
accuracy, 0.06% basic I-year acVaccuracy, and 0.01% 
basic I-year resistance accuracy. Our patented 
Multi-slope III A-D technology offers incredible 
linearity (2 ppm of reading + 1 ppm of range) along 
with 22 bits of real resolution. And since it is an 
integrating AID, it provides excellent noise rejec­
tion as well-a nice change from noisy PC plug-ins 
and sampling AIDs. No more averaging lots of sam­
ples just to see the real data you wanted. And if 
you need high scan rates, the 34970A is capable of 
delivering fully converted measurements at speeds 
up to 250 chis. 

The input section of the DMM is optically isolated 
and shielded from the 34970A's earth-referenced 
circuitry and computer interface, offering up 
to 300 V of input isolation. This is important for 
reducing ground loop and common mode voltage 
errors associated with long wiring runs and float­
ing measurement sources. 
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Flexible functionality 
The DMM is installed inside the chassis rather 
than in one of the slots, leaving all three main­
frame slots free for switch and control modules. 
You can choose from eight different modules 
(see page 11) to get the precise functionality you 
need now-while giving you flexibility for future 
expansion. 

The internal DMM gives you the flexibility to meas­
ure 11 types of inputs easily and inexpensively. 
The built-in signal conditioning and conversion 
routines tum raw inputs directly into real informa­
tion. Each measurement channel is independently 
configurable, so you can set different measurement 
functions, scale factors and alarm limits, even 
on adjacent channels. Advanced measurement fea­
tures such as offset compensation, variable inte­
gration time, and delay are also selectable on a 
per-channel basis. 

Get bettar measurements with built-in 
signal conditioning 
The Agilent 34970A architecture offers 
advantages over other data acquisition solu­
tions which rely on external or plug-in signal 
conditioning modules for handling functions 
other than dcV: 

• Minimizes external wiring and the result­
ant potential for noise and errors to enter 
your system 

• Reduces hidden costs and overall system 
cost by avoiding unnecessary cables, 
breakout boxes and signal conditioning 
elements 

• Simplifies your configuration-for faster, 
easier setup-with fewer connections and 
components 

• Takes the guesswork out of error analysis. 
Measurement accuracies are specified to 
include all system-related errors 

• Improves reliability, with fewer intercon­
nects and fewer parts that can fail 



Software drivers 
Your months of test system software development 
time need not go to waste. Software drivers that 
support Agilent VEE and National Instruments 
LabVieW® are available for the 34970A to make 
integration into your test system easy. Standard 
RS-232 and GPIB interfaces and SCPI program­
ming language make integration even easier. 

--. . 

-: -. - \ - -. -

Compact 50-channel data acquisition system 

ATE Feature Checklist 
• 3-slot card cage with 6 '/2 digit (22 bit) 

internal DMM 
• 0.004% basic I-year dcV accuracy; 0.06% 

ac V accuracy 
• Up to 120 single-ended measurements 

or 96 matrix crosspoints in a 3'/2" high, 
half-rack instrument 

• Eight switch and control modules include 
low-frequency and RF multiplexers, matrix 
and actuation switches, digital input and 
output, analog output, and event recording 

• Scan rates up to 250 chi s 
• GPIB and 115 kbaud RS-232 interfaces 

standard 
• Software drivers available to support 

Agilent VEE and National Instruments 
LabView® 

• Relay maintenance feature for system 
maintenance 

• 3-year warranty 
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Low-cost. high-quality switching for 
automated test 
If you don't need the built-in measurement 
capability of the 34970A, ave money by ordering 
it without the DMM. What you end up with is the 
lowest-cost switch unit on the market. It's an ideal 
solution for routing test signals to and from your 
DUT and assorted instruments, including external 
DMMs, scopes, counters, and power upplie . Plus, 
you can add the DMM later if your needs change. 

The functionality you need 
We put a lot of thought into defining and designing 
the modules for the 34970A in order to cover 
a broad spectrum of switching and signal routing 
requirements with fewer modules. The result? 
Simplified ordering and easier configuration . 

• : 0; 

Low-cost switching system for automated testing 
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And while we were at it, we improved performance 
and denSity. The 34970A modules can switch from 
microvolts to 300 volts, dc to 2 GHz, and with den­
sities as high as 120 single-ended channels or 96 
matrix crosspoints per frame. Plus, simple control 
capabilities like analog outputs, open collector digi­
tal outputs, and isolated Form-C relays for control­
ling higher-powered devices are available. 

Easy scanning 

The 34970A can easily scan with external instru­
ments. It builds a scan list that includes all enabled 
low-frequency multiplexer inputs. Scans are con­
trolled with the external "channel advance" input, 
or with the front panel "Step" key. 



Customize your Agilent 34970A with plug-in 
modules 
A complete selection of plug-in modules gives you 
high-quality measurement, switching, and control 
capabilities to choose from. Modules include both 
lOW-frequency and RF multiplexers, a matrix switch, 
a general-purpose switch, and a multifunction 
module that includes digital input/output, analog 
output, and totalizer capabilities. You can mix and 
match modules to get just the functionality you 
need right now-then change or add more channels 
later as your application grows. 

Modules for the 34970A are designed to make your 
testing easier, faster, and more reliable. Here's how: 

Higher throughput 
Our unique architecture incorporates a high­
performance microprocessor on each module, off­
loading the mainframe processor and minimizing 
backplane communications for faster throughput. 

Agilent Module.-at-a-Glance Selection Guide 

MOM' ...". .,.... MIX 
D_riptiol (cla/secl "... 

34II1A 2 -wire armature 60 300 V 
20 ell M.ltip ... ., (4-wire selectable) 

34II2A 2-wire reed 250 lO0V 
1&eh Multip .... r (4-wire selectable) 

3CID3A SPOT Iform C 120 300 V 
28 eh Ac1IIIItIr/GP SwitcIt 

34ID4A 2 -wire armature 120 300 V 
4x8Mmix 

34H5A Common low 60 42V 
DUI'. eh Rf M •• 5I{l ( unterminated) 

34111A Common Low 60 42 V 
DUll. ell Rf M •• 75n (unterminated) 

34H7A Two 8-bit digital 110 ports 42V 
Multifunction M ••• 26-bit Event Counter 42V 

Two 16-bit Analog outputs ±12 V 

341111A I·wi re armature 60 300 V 
48 eh Si_,'I-EIIII ... Max (common low) 

More channels in Ie .. space 
Surface mount construction and a highly inte­
grated design minimize the space required for 
relay drive and interface circuitry. High density 
on-module connectors save both board and con­
nector space normally required by a terminal 
block. We use the latest technology to squeeze 
the most out of the remaining board space, 
giving you up to 40 single-ended channels in 
roughly the same space used by many data 
acquisition system terminal blocks. 

Convenient connections 
On-module screw-terminal connectors make 
wiring more convenient. BUilt-in strain-relief cable 
routing and cable tie points keep your wiring 
secure and safe from accidental tugs and pulls. 
An internal analog bus routes signals from any 
of the low-frequency multiplexers directly to 
the internal DMM, without the need for external 
connections. 

Use the chart below to help you pinpoint the 
modules that meet your needs. 

MIX BeIlllwilNl TIle,. •• eo ...... -.. 0ffHt 
P •• -

lA 10MHz <31N Built·in cold junction reference 
2 additional current channels (22 total) 18 

50 rnA 10MHz <61N Built·in cold junction reference 
19 

lA 10 MHz <311V 

20 

lA 10MHz <311V 

20 

0.7 A 2GHz <611V 1 GHz bandwidth through 
BNC-to-SMB adapter cable 21 

0.7 A 2 GHz <611V 1 G Hz bandwidth throug h 
BNC-to-SMB adapter cable 21 

400mA Open drain 
100 KHz Selectable input threshold 

10 rnA dc Max 40 mA total output per frame 22 

IA 10MHz < 311V Built-in cold junction reference 
No four-wire measurements 19 
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A warranty worth reading 
We know you can't afford instrument downtime 
due to hardware failure and un cheduled mainte­
nance. That's why our engineers de igned reliability 
into the 34970A: A rugged enclo ure, tate-of-the­
art surface mount construction throughout, reduced 
parts counts, and rigorous and thorough testing on 
all aspects of the product. In fact, we are so confi­
dent of the quality and performance of the 34970A 
that we are offering a 3-year limited warranty on 
all hardware. 
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Take the guesswork out of relay maintenance 
The 34970A uses our proprietary relay mainte­
nance system to help you to predict relay end-of­
life and avoid costly production-line downtime. 
It automatically counts every individual switch 
closure and stores it in nonvolatile memory on 
each module. You can query the total number 
of cycles on any individual channel so you can 
schedule maintenance and avoid erratic end-of­
life failures. 



Spec Interpretation Guide 
The following pages list the technical specifications 
for the Agilent 34970A Data Acquisition/Switch 
Unit and its modules. The explanations and exam­
ples below are helpful in understanding how to 
interpret these specifications: 

• Measurement accuracy is specified as percent 
of reading plus percent of range, where reading 
is the actual measured value and range is the 
name of the scale (lV, lOY, etc. )-not the full 
scale value (1.2V, 12V, etc.). 

• DMM measurement accuracies include all switch­
ing errors. Switching errors are also listed 
separately in the module specifications section. 
Temperature measurement accuracies include 
ITS-OO conversion errors. The thermocouple 
accuracies include the reference junction error 
as well. 

• Accuracies are listed as either 24-hour, 9O-day, 
or I-year specifications. This refers to the 
length of time since the instrument's last cali­
bration. Use the specification that matches 
your calibration cycle. The 24-hour specifica­
tions are useful for determining short-term 
relative performance. 

EXAMPLE 1: Baie deV leeunlCY 
Calculate the accuracy of the following 
measurement: 

9 V dc input 
10 V dc range 
I-year accuracy specifications 
Normal operating temperature (lsoC-2S°C) 

From the following page, the I-year accuracy is: 
0.0035% of reading + 0.0005% of range 

Which translates into: 
(0.0035/100 x 9 V)+ 
(0.0005/100 x 10 V) = 365J.1V 

For a total accuracy of: 
3&5pV / • V = •.• 1" 

EXAMPLE 2: Extreme operating temperature 
When the 34970A is used outside of its lsoC-2SoC 
temperature range, there are additional tempera­
ture drift errors to consider. Assume the same 
conditions in example 1, but at a 35°C operating 
temperature. 

The basic accuracy is again: 
0.0035% of reading + 0.0005% of range=365 J.lV. 

Now, multiply the 10 V temperature coefficient 
from the following page by the number of degrees 
outside of operating range for additional error: 
(0.0005% reading + 0.0001% range) 

rC x (35°C - 2S0C) = 
(0.0005% reading + 0.0001% range) 

rC x 7°C = 
0.0035% reading + 0.0007% range = 3S5 J.lV 

Total error is then: 
3&5 pV + 385 pV = 750 pV or 0.008% 

EXAMPLE 3: Thermocouple mea.urement accuracy 
Calculating the total thermocouple reading error 
is easy with the 34970A-just add the listed meas­
urement accuracy to the accuracy of your trans­
ducer. Switching, conversion, and reference junc­
tion errors are already included in the measure­
ment specification. 

For this example, assume a J-type thermocouple 
input reading 150°C. 

From the follOwing page, total error is: 
Thermocouple probe accuracy + 1.0°C 
The probe vendor specifies accuracy of 1.1 °C 

or 0.4%, whichever is greater. 

Total error is then: 
1.D·e + 1.1 ·e = 2.1·e total. or 1.4% 

EXAMPLE 4: leV Accuracy 
The acV function measures the true RMS value 
of the input waveform, regardless of waveshape. 
Listed accuracies assume a sinewave input. To 
adjust accuracies for non-sinusoids, use the listed 
crest factor adder. 

For this example, assume a :U V square wave 
input with 50% duty cycle and a 1 kHz frequency. 

Accuracy for 1 V, 1 kHz sinusoid is: 
0.06% reading + 0.04% range 
A 50% duty cycle squarewave has a crest factor of 

Peak Value / RMS value = 1 V / 1 V = 1 

From Crest Factor table, add: 
0.05% of reading 

The total accuracy is: 
0.11" of reading + 0.04% of range = 1.5 mV or 0.15% 
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Accuracy Specifications :t(" of reading + "of rang.)(I) 
Includes measurement error, switching error, and transducer conversion error 

T.mp.rlture 
R .... iJI F ....... IICy. etc. 24H .. r'~ HD~ 1 V .. r Coefficient 

zrC±1·C zrc±S·C zrC:tS·C 0·C-1.·C.28·C-6S·C 
DCVoltli .. 

100.0000 mV 0.0030 + 0.0035 0.0040 + 0.0040 0.0050 + 0.0040 0.0005 + 0.0005 
1.000000 V 0.0020 + 0.0006 0.0030 + 0.0007 0.0040 + 0.0007 0.0005 + 0.0001 
1 •. "" V .... ,5+ .... 14 .... 20+0.0.05 0 .•• 35 + 0.".5 0.0005 + 0.0101 
100.0000 V 0.0020 + 0.0006 0.0035 + 0.0006 0.0045 + 0.0006 0.0005 + 0.0001 
300.000 V 0.0020 + 0.0020 0.0035 + 0.0030 0.0045 + 0.0030 0.0005 + 0.0003 

Tru. RMS AC V ...... 14I 

100.0000 mV 3 Hz-5 Hz 1.00 + 0.03 1.00 + 0.04 1.00 + 0.04 0.100 + 0.004 
to 100.0000V 5 Hz-l 0 Hz 0.35 + 0.03 0.35 + 0.04 0.35 + 0.04 0.035 + 0.004 

1. Hz-ZI kHz '.14+1.13 0.05+ •. 14 0.01 + 0.14 0.005 + o.oM 
20 kHz-50 kHz 0.10 + 0.05 0.11 + 0.05 0.12 + 0.05 0.011 + 0.005 
50 kHz-l00 kHz 0.55 + O.OS 0.60 + O.OS 0.60 + O.OS 0.060 + O.oOS 
100 kHz-300 kHzI'J 4.00 + 0.50 4.00 + 0.50 4.00 + 0.50 0.20 + 0.02 

300.0000V 3 Hz-5 Hz 1.00 + 0.05 1.00 + O.OS 1.00 + 0.08 0.100 + 0.008 
5 Hz-l 0 Hz 0.35 + 0.05 0.35 + O.OS 0.35 + O.OS 0.035 + 0.008 
10 Hz-20 kHz 0.04 + 0.05 O.OS + O.OS 0.06 + O.OS 0.005 + 0.008 
20 kHz-50 kHz 0.10 + 0.10 0.11 + 0.12 0.12+0.12 0.011 + 0.012 
50 kHz-l 00 kHz 0.55 + 0.20 0.60 + 0.20 0.60 + 0.20 0.060 + 0.020 
100 kHz-300 kHzI'j 4.00 + 1.25 4.00 + 1.25 4.00 + 1.25 0.20 + 0.05 

R __ nu IlJ 

100.00000 1 mA current source 0.0030 + 0.0035 0.008 + 0.004 0.010 + 0.004 0.0006 + 0.0005 
1.000000 kn lmA 0.0020 + 0.0006 O.OOS + 0.001 0.010 + 0.001 0.0006 + 0.0001 
11."'" lin 1MIIA .... 21+ .... 1.108+0 •• ' 0.010 + 0.001 0.0001 + 0.0101 
lo0.0000kn 10 IJA 0.0020 + O.OOOS O.OOS + 0.001 0.010 + 0.001 0.0006 + 0.0001 
1.000000MO 5.01JA 0.002 + 0.001 O.OOS + 0.001 0.010 + 0.001 0.0010 + 0.0002 
10.00000 MO 500 nA 0.015 + 0.001 0.020 + 0.001 0.040 + 0.001 0.0030 + 0.0004 
100.0000 MO 500 nA/l0 MO 0.300 + 0.010 0.800 + 0.010 O.SOO + 0.010 0.1500 + 0.0002 

Frequ •• cy .nd P.riodJ71 

100mV 3 Hz-5 Hz 0.10 0.10 0.10 0.005 
to 300 V 5 Hz-l 0 Hz 0.05 0.05 0.05 0.005 

10 Hz-40 Hz 0.03 0.03 0.03 0.001 
41 Hz-311 kHz 1.011 1.11 0.01 0.001 

DC Current (34901A only) 

10.00000 mA <0.1 V burden 0.005 + 0.010 0.030 + 0.020 0.050 + 0.020 0.002+ 0.0020 
1 ...... mA <UV 1.011+"''' 1.13D+I.I05 usa + 0.005 O.Doz + 0.0"5 
1.000000 A <2V O.OSO + 0.006 0.080 + 0.010 0.100 + 0.010 0.005 + 0.0010 

Tru. RMS AC Current (34901A only) 

10.00000 mA 3 Hz-5 Hz 1.00 + 0.04 1.00 + 0.04 1.00 + 0.04 0.100 + 0.006 
ancf1" 1.000000 A 5 Hz-l0 Hz 0.30 + 0.04 0.30 + 0.04 0.30 + 0.04 0.035 + 0.006 

1IHz-SkHz 1.1' +1.14 •• 10+ 0.14 0.10+ 0.14 •. 015 + 0.001 
1 00.0000 mA~1 3 Hz-5 Hz 1.00 + 0.5 1.00 + 0.5 1.00 + 0.5 0.100 + 0.06 

5 Hz-l 0 Hz 0.30 + 0.5 0.30 + 0.5 0.30 + 0.5 0.035 + 0.06 
10 Hz-5 kHz 0.10 + 0.5 0.10 + 0.5 0.10 + 0.5 0.015 + 0.06 

T.mpellltllre Type 1-Yor Accurecy"J Exte.ded R .... 1-Ve.r AcCUrlCY"1 

nermocoupl. B 11 OO·C to lS20·C 1.2·C 400·C to 11 OO°C 1.SoC 
E -150·C to 1000°C 1.0°C -200°C to -150°C 1.5°C 
J -1We to lZ11°e l.I°C -Z1.oC to -1SOoe 1.Z°C 
K -100°C to 1200°C 1.0°C -200°C to -100°C 1.5°C 0.03°C 
N -100°C to 1300°C 1.0°C -200°C to -100°C 1.5°C 
R 300·C to 1760·C 1.2·C -50·C to 300°C 1.S·C 
S 400·C to 1760°C 1.2°C -50·C to 400°C 1.S·C 
T -100·C to 400·C 1.0°C -200·C to -1 OO·C 1.5·C 

RTD Rofrom490to 2.1 kn -200·C to 600·C 0.06°C 0.003 ·C 

TII.rmistor 2.2 k. 5k. 10k -SO·C to lSO·C O.OB·C 0.002 ·C 

[1] Specifications are for 1 hr warm·up and 6'1. digits. Slow ac filter [5] Typically 30" of reading error at 1 MHz. limited to 1 x 10' V Hz 
[2] Relative to calibration standards [6] Specifications are for 4- wire ohms function or 2·wire ohms using Scaling 
[3] 20% over range on all ranges except 300 Ydc and aC ranges and 1 Adc and aC to remove the offset. Without scaling. add 1 0 additional error in 2·wire 

current ranges Ohms function 
[4] For sinewave input> 5% of range. For inputs from 1 % to 5" of range and [7] Input > 100 mY. For 10 mY inputs multipy % of reading error x 10 

< 50 kHz. add 0.1" of range additional error [8] Specified only for inputs> 10 mA 
[9] For total measurement accuracy. add temperature probe error 



Measurement Characteristicsll) 

DCYolbl .. 
Measurement Method 

A-D Unearity 
Input Resistance 

100 mV_ 1 V. 10 V ranges 
100 V. 300 V ranges 

Input Bias Current 
Input Protection 

Tru. RMS AC yo ..... 
Measurement Method 

Crest Factor 
Additional Crest Factor 

Errors (non-sinewave) 

Input Impedance 
Input Protection 

Rosistance 
Measurement Method 

Offset Compensation 
Maximum Lead Resistance 

Input Protection 

Frequency end P.riod 
Measurement Method 
Voltage Ranges 
Gate Time 
Measurement Timeout 

DC Cumllt 
Shunt Resistance 
Input Protection 

Tru. RMS AC Currot 
Measurement Method 

Shunt Resistance 
Input Protection 

Thermocouple 
Conversion 
Reference Junction Type 
Open thermocouple Check 

Thermistor 

RTD 

Continuously Integrating 
Multi-slope III A-D Converter 
0.0002% of reading + 0.0001 " of range 

Selectable 10 Mn or > 10.000 Mll 
10 Mll:t 1" 
< 30 pA at 2S·C 
300 V all ranges 

AC coupled True RMS - measures the 
AC component of the input with up to 
300 Vde of bias on any range 
Maximum of S:l at Full Scale 

Crest Factor 1-2 0.05" ofreading 
Crest Factor 2-3 O.lS" ofreading 
Crest Factor 3-4 0.30 " of reading 
Crest Factor 4-S 0.40 " of reading 
1 Mn:t 2" in parallel with 150 pF 
300 Vrms all ranges 

Selectable 4-wire or 2·wire Ohms 
Current source referenced to LO input 
Selectable on 1 DOn. 1 k.Q 1 Okll ranges 
10% of range per lead for 100 nand 
1 k.Q ranges. 1 len on all other ranges 
300 V on all ranges 

Reciprocal counting technique 
Same as AC Voltage function 
Is. 100 ms. or 10 ms 
Selectable 3 Hz. 20 Hz. 200 Hz LF limit 

5 n for 10 rnA. 100 rnA 0.1 n for 1 A 
lA 250 V fuse on 34901 A module 

Direct coupled to the fuse and shunt. 
AC coupled True RMS measurement 
(measures the ac component only) 
5 n for 10 rnA 0.1 n for 100 rnA. 1 A 
lA 250 V fuse on 34901A module 

ITS·90 software compensation 
Internal. Fixed. or External 
Selectable per channel. Open >5k.Q 

44004.44007. 44006 serie5 

a = 0.00385 (DIN) and a = 0.00392 

Meesurement Noi .. Rejection H (SI) HzI'I 
dc CMRR 140 dB 
ac CMRR 70dB 
Intellration TIme Normel MlMle Rejectionl'l 
200 plc/3.335 (45) 11 0 dB ,,: 
100 plc/l67s (2s) 105 dB" 
20 plc/333 ms (400 ms) 100 dB" 
10 plc/167 ms (200 ms) 95 dB" 
2 plc/33.3 ms (40 ms) 90 dB 
1 plc/16.7 ms (20 ms) 60 dB 
< 1 pic 0 dB 

Operating Characteristicsl4) 

Single CIIenn .. _remellt RIItH 1'1 
f.ncdon Resolution 1'1 

deV. 2-wire Resistance 

Thermocouple 

RTD. Thermistor 

acV 

Frequency. Period 

SyatemS ..... 1lI 

INTOMomory 
single channel dcV 
3490ZA scanning dcV 
34907 A scanning digital in 

6'Iz digits (10 pic) 
5'Iz digits (1 pic) 
4'/, digits (0.02 pic) 

O.l·C (1 pic) 
(0.02 pic) 

O.Ol·C pO pic) 
O.l·C (1 pic) 
l·C (0.02 pic) 

6'1, Slow (3 Hz) 
6'1, Med (20 Hz) 
6'1, Fast (200 Hz) 
6'/,111 

6'Iz digits (Is gate) 
5'1, digits (100 ms) 
4'Iz digits (10 ms) 

3490ZA scanning dcV with scaling & 1 alarm fail 
34907 A scanning totalize 
3490ZA scanning temperature 
3490ZA scanning acVl'1 
3490ZA scanning dcV/Ohms on alternate channels 
34901A/3490BA scanning dcV 
INTO end OUT of memory to GPiB or RS-232 (init. fetch) 
3490ZA scanning dcV 
3490ZA scanning dcV with timestamp 
OUT of memory to GPIB 
Readings 
Readings with timestamp 
Readings with all format options ON 
OUT of memory to RS-232 
Readings 
Readings with timestamp 
Readings with all format options ON 
DIRECT to GPiB or RS-Z32 
single channel dcV 
3490ZA scanning dcV 
single channel MEAS DCV 10 I MEAS DCV 1 
single channel MEAS DCVI MEAS OHMS 

(1) For 1 Kn unbalance in LO lead 
[21 For power line frequency ±0.1 % 
(3) For power line frequency ±1% use 80 dB or ±3% use 60 dB 
(4) Reading speeds for 60 Hz and (50 Hz) operation 

reedinil/a 

6 (5) 
57 (47) 
600 

57 (47) 
220 

6 (5) 
57 (47) 
220 

0.14 
1 
8 
100 

1 
9 
70 

chi. 
600 
250 
250 
220 
170 
160 
100 
90 
60 

180 
150 

BOO 
450 
310 

BOO 
320 
230 

440 
200 
25 
12 

(5) For fixed function and range. readings to memory. scaling and alarms off. 
AZERO OFF 

(6) Maximum limit with default settling delays defeated 
[71 Speeds are for 4'/, digilli. delay 0. display off. autozero off. 

Using 115 kbaud RS·Z3Z setting 
[81 Isolation voltage (ch . ch. ch . earth) 300 Vdc, ac rms 
[9J 6 'f, digits: 22 bits. 5'/' digits: 18 bits. 4'/, digits: 15 bits 
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System Specifications 

Digital 
Scan list 

Sca. Trig .. riII, 
Source 

Scan count 
Scan interval 
Channel delay 
External trig delay 
External trig jitter 

Alarms 
Analog inputs 
Digital inputs 

Monitor channel 
Alarm Outputs 

latency 

Memory 

Readings 

States 
Alarm Queue 

Systemf .... ras 
Per.channel Math 

Power Fail Recovery 
Relay maintenance 

Real·time clock 

General $pecifiCltioa 
Power Supply 
Power Line Frequency 
Power Consumption 
Operating Environment 

Storage Environment 
Weight 
Safety 
RFI and ESD 
Warranty 
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34901A. 34902A. and 34908A 
multiplexer channels 
34907 A digital in and totalize 
Scans channels in ascending order 

Interval. external. button press. software. 
or on monitor channel alarm 
1 to SO.OOO or continuous 
o to 99 hours; 1 ms step size 
o to 60 seconds per channel; 1 ms step size 
<2 ms. With monitor on <200 ms 
<2 ms 

Hi. Lo. or Hi + Lo evaluated each scan 
34907A digital in maskable pattern match 
or state change 
34907A totalize: Hi limit only 
Alarm evaluated each reading 
4 TTL compatible 
Selectable TTL logic Hi or Lo on fail 
5 ms (typical) 

Battery backed. 4 year typicallifeJ'i 
50.000 with timestamp 
Readable during scan 
5 instrument states with user label 
Up to 20 events with channel number. 
reading. and timestamp 

Individual Mx + B scaling and 
Min/Max/Average calculated real time 
Resumes scanning automatically 
Counts each relay closure and stores 
on module User resettable 
Battery·backed. 4·year typical life'" 

100V/120V/220VI240V ±10% 
45 Hz to 66 Hz automatically sensed 
12 W (25 VA peak) 
Full accuracy for O·C to 55·C 
Full accuracy to 80% R.H. at 40·C 
·40·C to 70·C" 
Net 3.6 kg (8.0 Ibs) 
Conforms to CSA. UL·1244.IEC 1010 Cat I 
CISPR 11. IEC 8011213/4 
3 years 

Software 

HP Be,cIlU,k Om Lo .. er 
(not included with Option 001) 

System Requirements"1 

PC Hardware 
Operating System 

Instrument Support 

Com....., Interflc .. P1 

GPIB 

LAN-to-GPIB 

HP BenchUnk felltUres 
Configuration 

Graphical Displays 

Graphical Controls 
Alarm / Umit testing 

Data 

Event logging 

Printing 

HP BenchUnk PerfDrmance'41 

Scan and save to disk 
Readings saved 

486. 66 MHz. 16 MB RAM. 12 MB disk space 
Windows· 3.1.Windows 95-. 
Windows NT 4.0-
Single 34970A operation 
Single program window 

82335B. 82340A/B/C. 82341A/B/C/D 
National Instruments AT-GPIBITNT. 
PCI-GPIB. PC-MCIA 
E2050A (Windows 95 and NT only) 
RS-232 (Serial Port) PC COM 1-4 

Spreadsheet-like setup page 
Upload and Download intrument setups 
Computed channels using + - °1. dB. dBm. 
dBV. xl . ..fX and full. '/~ or I/o bridge strain 
Real-time and historical data displays 
Add. delete. size. and configure real time 
Strip chart with markers and alarm indication. 
X-Y chart with curve fit. Histogram with 
statistics. Bar meter. Digital meter. and 
Data table 
Sliders. switches. buttons. and LED lights 
Start/Stop scanning on alarm condition 
Control 34903A relay state or 34907 A 
digital output on alarm 
Real time streamed (saved) to disk 
Copy data or graphics to windows clipboard 
Export user-selected data to ASCII file. CSV. TSV 
Automatic entry of alarms and errors 
Enter user notes real time 
Setup spreadsheet. all graphics. and 
event log entries 

1 DO chI s 2 strip charts displayed 
Maximum 150M/file 

I,stnlment Driver Support for Programming ungu,g .. 
Universal Compatible with Windows 95 and NT 
Instrument Driver" Agilent VEE 3.2 or greater 

Visual Basic 4.0. 
LabWindows CVI 4.0. 
LabVIEW 4.0 

Labview Driver (VI) LabVIEW 4.0 

[1] Storage at temperatures above 40'C will decrease battery life 
[2] Software provided on CO·ROM and includes utility to create floppy disks for 

installation 
[3] Interface and driver must be purchased and installed separately 
[4]90 MHz Pentium. 20 MB RAM 
[5] Requires VISA command library for IEEE·488 

WindOW$. Windows 95. and Windows NT are registered trademarks of Microsoft 
Corporation. 

LabVIEW is a registered trademark of National Instruments Corporation. 



Modul .. Specifications 
The Agilent 34970A accuracy specifications already 
include the switching offset and reference junction 
errors shown below. These errors are listed sepa­
rately for determining system error with external 
measurement devices. 

Up to three modules, in any combination, can be 
inserted into a single mainframe. The 34970A's 
internal DMM connections are accessible only 

GII.' 
Number of Channels 

Connects to Internal DMM 
Scanning Speed 
Open/Close Speed 

1I!IIIt 
Voltage (de. ac rms~" 
Current (dc . ac rms) 
Power (W . VA) 

DC Ch.r.c:teristics 
Offset Voltage ", 
Initial Closed Channel R ," 
Isolation ch·ch. ch·earth 

AC Cherectaristic:s 
Bandwidthl" 

Insertion Loss (dB) 

SWR 

10 MHz 
100 MHz 
500 MHz 

1 GHz 
1.5 GHz 

2 GHz 

10 MHz 
100 MHz 
500 MHz 

1 GHz 
1.5 GHz 

2 GHz 

Mlltiplu.r 

Ktl1A 

20 + 2 
214 wire 

60 chIs 
120/5 

300 V 
lA 
SOW 

< JuV 
<10 
> lOGO 

10 MHz 

ch·ch Cross Talk (dB~" 10 MHz ·45 
100 MHz 
500 MHz 

1 GHz 
1.5 GHz 

2 GHz 

Risetime 
Signal Delay 
Capacitance HI· LO < SO pF 

Volt· Hertz limit 
LD . Earth < 80 pF 

10' 

Oth.r 
TIC Cold Junction Accuracyi' 

(typical) 
Switch Life No Load (typical) 

Rated Load (typical)" 

0.8°C 
100M 
lOOk 

34112A"1 

16 
214 wire 

2SO chis 
120/5 

300 V 
SOmA 
2W 

< 6uV 
<10 
> lOGO 

10 MHz 

-45 

< 50 pF 
< 80 pF 
111' 

O.SOC 
100M 
lOOk 

40 
1 wire 

60 chis 
7015 

300 V 
lA 
SOW 

<JuV 
<10 
>10GO 

10MHz 

< 50 pF 
< 80 pF 
10' 

D.8°C 
100M 
lOOk 

through the 34901A, 34902A, and 34908A low­
frequency multiplexers. 

On-module screw terminals accept wire sizes from 
16 gage to 22 gage. Twenty-gage wire is recom­
mended for high channel count applications. The 
34905A and 34906A RF Multiplexers use 5MB 
connectors. A standard set of (10) BNC-to-SMB 
adapter cables is provided with each RF module 
for convenient BNC connections. 

Metria 
----------------

20 
SPOT 

120/5 

300 Y 
lA 
SOW 

<3uV 
<0.20 
>10 GO 

10 MHz 

-45 

< 10 pF 
< 80 pF 
10' 

100M 
lOOk 

34I1MA 

4x8 
2 wire 

120/5 

300 V 
lA 
SOW 

<3uY 
<10 
>10GO 

10 MHz 

·33 

< 50 pF 
< 80 pF 
10' 

100M 
lOOk 

RF Multiplex'r 

34805A 34101A 

Dual 1 x 4 
500 750 

6015 

42 V 
O.7A 
20W 

< 6uV 
<0.50 
>1 GO 

2 GHz"1 
·0.1 
·0.4 
·0.6 
·1 
·1.2 
·3 

1.02 
1.05 
1.20 
1.20 
1.30 
1.40 

·100 
·85 
·65 
·55 
·45 
·35 

5M 
lOOk 

< 300 ps 
< 3 ns 
< 20 pF 

10" 

2 GHz 1'1 
·0.1 
·0.4 
·0.5 
·1 
·1.5 
·2 

1.02 
1.05 
1.25 
1.40 
1.40 
2.00 

·85 
·75 
·65 
·50 
·40 
-35 

5M 
lOOk 

Multifunction 

34807A 

See page 22 
for module 
specifications 

Temperature Operating 
Storage 

Humidity (non·condensing) 

all cards - O°C to 55°C 
all cards - -20·C to 70·C 
all cards - 40·C/BO% RH 

[1] Not recommended for connection to ac line without external transient suppression 
[2] Channel-to-channel or channel-to-earth 
[3] Errors included in DMM measurement accuracy specifications 
[4]500 source. 500 load 

[5] Bandwidth direct to card 5MB connectors 
[6]lsolalion within channell to 20 or 21 to 40 banks is -40 dB 
[7] Applies to resistive loads only 
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Multiplexer Selection Guide 
Choose between the broad functionality of the 
34901A, the high speed scanning of the 34902A, 
or the single-ended density of the 34908A. These 
three modules are the only way to connect to the 
34970A internal DMM. They can be used to scan 
With external instruments as well. 

All multiplexer modules employ break-before­
make scanning, ensuring only one closed channel 
(or channel pair) at a time. Multiple channel 
closures are allowed on the 34901A and 34902A 
modules when not configured for scanning. 

The 34908A does not allow multiple channel clo­
sures at any time. 

34901A 
20-Channel General -Purpose Multiplexer 
• 60 chi s scanning 
• Two- and four-wire scanning 
• Built-in thermocouple reference junction 
• 300 V switching 

The Agilent 34901A is the most versatile multi­
plexer for general purpose scanning. It combines 
dense, multifunction switching with 60 channelj 
second scan rates to address a broad spectrum 
of data acquisition applications. 

Two- and four-wire channels can be mixed on 
the same module. Two additional fused inputs 
(22 channels total) route up to lA of current to 
the internal DMM, allowing ac and dc current 
measurements without the need for external 
shunt resistors. 
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Number of Channels 
Max scan speed 
Number of contacts 

Temperature 
Thermocouple 

2·wire RTD 
4·wire RTD 
Thermistor 

dc Volts 
ac Volts 
2·wire Ohms 
4·wire Ohms 
Frequency 
Period 
dc current 
ac current 

349D1A 
20 + 2 
60 chis 
2 or 4 

8acJrpIane Swid!es DIanne Swid!es 
~ H 

0 , 

H 
0 , 

]T 
Reference 
Junction 
Sensor H 

&, 

H 

Internal 
~ , 

DMM lnput 
Shunt SWJit:hes (4WSense) 

Fuse 

I , 

01 

10 

Com 

Com 

349D2A 
16 
250 chis 
2 or 4 

(4WSense) 

11 

20 

21 

Current 
Channels 

22 

Com 
(Cumont) 

349D8A 
40 
60 chis 
1 



34902A 
16-Channel High-Speed Multiplexer 
• 250 chi s scanning 
• Two- and four-wire scanning 
• Built-in thermocouple reference junction 

The Agilent 34902A employs reed relays to achieve 
scan rates up to 250 channels per second. Use this 
module for high-throughput automated test appli­
cations as well as high-speed data logging and 
monitoring tasks. 

Sixteen two-wire inputs switch up to 300 V. 
Two- and four-wire channels may be mixed on 
the same module. User provided shunt resistors 
are required for current measurements. 

34908A 
40-Channel Single-Ended Multiplexer 
• 60 chi s scanning 
• Single-wire switching for common-low 

applications 
• Built-in thermocouple reference junction 

Use the Agilent 34908A for the greatest density 
in common-low applications, such as battery test, 
component characterization, and benchtop testing. 

Each module switches 40 one-wire inputs. All 
two-wire internal measurements except current 
are supported. The module low connection is 
isolated from earth and can float up to 300 V. 

Backplane .5WJidJes 
2L.../ 
...L../ 
Imemal 
DMM lnput 

)T 
Reference 
JunctIOn 
Sensor 

Imernal 
DMM lnput 
(4WSense) 

C1Jame/ .5WJidJes 

H 01 0L 

" 0L 08 

Com 

Com 
(4WSense) 

H 
09 ISlL 

" 16 ISl L 

Note: Not recommended for connec­
tion to ac li ne without external tran­
sient suppression. 

Ref .... nce 
Junction 
Sensor 

<>----0H 01 

<>----0H 20 

r---+--------<IIHCom 

BankSMt;h 
~LCom 

Lo-o ----<0" 21 

L 00-----<0" 40 

Note: Thermocouples must be electri­
ca l/y isolated from each other to avoid 
current loops and subsequent meas­
urement errors. 
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34903A 
20-Channel Actuator/ General Purpose Switch 
• SPDT (Form C) latching relays 
• 300 V, lA actuation and control 

This general-purpose switch module has 20 inde­
pendent single-pole, double-throw (SPDT) relays. 
Use it to cycle power to products under test, con­
trol indicator and status lights, and to actuate 
external power relays and solenoid . Combine it 
with matrix and multiplexer modules to build eu -
tom switch systems. Its 300 V, lA contacts can 
handle up to 50 W, enough for many power line 
switching applications. 

34904A 
4x8 Two-wire Matrix Switch 

• 32 two-wire cross points 
• 300 V, lA switching 

The Agilent 34904A gives you the most flexible 
connection path between your device under te t 
and your test equipment, allowing different instru­
ments to be connected to multiple points on your 
nur at the same time. 

Rows or columns may be connected between multi­
ple modules to build 8x8, 4x16 or larger matrices, 
with up to 96 crosspoints in a ingle frame. 

20 

~-----1~ ~~M 01 
0-------0 NO 

~-----<~ ~~M 20 
0-------0 NO 

Coil 
H l 

Col 2 
H l 

CoIS 
H l 

ri----ri ____ ~+_--~H Row 1 

H---lH-- t-1-- 0 H Row2 

ri~--ri--__ ~+-__ ~H Row3 

'T-'"----.J'¥----....l.....~ __ -0 H Row4 

Channel 31 
(Row 3. Column 1) 



3490SA SOQ 
34906A 7SQ 
Dual4-channel RF Multiplexers 
• 2 GHz bandwidth 
• BNC to 5MB adapter cables included 

The Agilent 34905A and 34906A RF multiplexers 
offer broadband switching capabilities for high­
frequency and pulsed signals. Use them to route 
test signals between your device under test and 
your signal generator, oscilloscope, spectrum 
analyzer, or other instrumentation. 

The RF multiplexers are arranged as two independ­
ent lx4 multiplexers, each with a common shield 
and a switched center conductor. Connections 
Can be made directly to 5MB inputs with 2 GHz 
usable bandwidth, or to the BNC-to-SMB adapters 
provided with 1 GHz bandwidth. Multiple banks 
may be cascaded together for applications requir­
ing even larger topologies-create a stubless 16: 1 
multiplexer in a single frame. 

son MUX Typical AC Performance Graphs 
Insertion loss 

OdB 

·1 dB 

·2dB 

·3dB 

·4dB 

- r-' -

, 
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34907A 
Multifunction Module 
• 16 bits of digital input and output 
• 100 kHz totalizer input 
• Two ±l2V analog outputs 

The Agilent 34907 A allows great flexibility for a 
variety of sense and control applications. It com­
bines two 8-bit ports of digital input and output, a 
100 kHz gated totalizer, and two ±l2V analog out­
puts-all on a single earth-referenced module. The 
digital inputs and totalizer input may be included 
in a scan. Alarm limits for the digital and event 
counter inputs are evaluated continuously, captur­
ing and logging alarm conditions even between 
scans. 
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Digitallnput/Ouput 
Use the digital outputs with an external power 
supply to control microwave switches and attenua­
tors, solenoids, power relays, indicators, and more. 
Use the digital inputs to sense limit switch and dig­
ital bus status. There are no complex handshake 
modes; reads and writes are initiated either from 
the front panel or the bus. 

Digital Input/ Output 
Port 1, Z 8 bit, input or output, non isolated 
Vin(L) < O.8V (TIL) 
Vin(H) > Z.OV (TIL) 
Vout(L) < O.8V @ lout = ·400 mA 
Vout(H) > Z.4V @ lout = 1 mA 
Vout(H) max < 42V with external open drain pull·up 
Alarming Maskable pattern match or state change 

Speed 4 ms (max) alarm sampling 
Latency 5 ms (typical) to 34970A alarm output 

Read/Write Speed 95/s 

Totalize Input 
Count events from devices like photo interrupters, 
limit switches, and Hall-effect sensors. 

It keeps an updated total which can be read via the 
front panel or programmatically at any time. With 
26 bits of resolution, it can count events at full 
speed for nearly 11 minutes without an overflow. 

Totalize Input 
Max Count 
Totalize Input 

Signal level 
Threshold 
Gate Input 
Count Reset 
Read Speed 

Analog Output 

2"· 1 
100 kHz (max) Rising orfalling edge. 
programmable 
1 Vp·p (min) 42 Vpk (max) 
OV or TIL. jumper selectable 
TIL·Hi. TIL·Lo. or none 
Manual or Read + Reset 
85/s 

Use the two electronically calibrated analog out­
puts to source bias voltages to your device under 
test, to control your analog programmable power 
supplies, or use the outputs as setpoints for your 
control systems. The outputs are programmed 
directly in volts, either from the front panel or 
from the bus. 

Analog Output 
DAC 1. 2 
Resolution 

lOUT 

Settling time 
Accuracy 

1 year ±5°C 
Temp. Coefficient 

± 12V. nonisolated 
1 mV 
10 mA max 
1 ms to 0.01 % of output 
±(% of output + mV) 
0.25% + 20 mV 
± ( 0.015% + 1 mV)/oC 



Rack Mounting and Dimensions 
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To rack mount a single instrument, order adapter 
kit 5063-9240 (Option lCM) . 
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To rack mount two instruments side-by-side, order 
lock-link kit 5061·9694 and flange kit 5063-9212. 

To install one or two instruments in a sliding 
support shelf, order shelf 5063·9255, and slide kit 
1494-0015 (for single instrument, also order filler 
paneI5002·3999). 
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Ordering Information 
Mainframe 
34970A Data Acquisition/Switch Unit 
Includes internal 6'/2 digit DMM. Operating and 
Service Manuals. Test Report. power cord. and 
Quick Start package (includes HP Benchlink Data 
Logger software. RS-232 cable. thermocouple. and 
screwdriver) Modules are purchased separately 
and are required to operate. 
Option 001 Delete Internal DMM 
Same as above but deletes DMM and Quick Start 
package. Order 34970-80010 to retrofit DMM at a 
later time. 
Option 1CM Rack Mount Kit 
Option OBO Delete Manual Set 

Module. 
34901A 20-Channel Armature Multiplexer 
34902A 16-Channel Reed Multiplexer 
34903A 20-Channel Actuator/General Purpose 
Switch 
34904A 4 x 8 Two-Wire Matrix Switch 
34I05A Dual 4-Channel RF Multiplexer. 50 Ohms 
3490IA Dual 4-Channel RF Multiplexer. 75 Ohms 
34907A Multifunction Module 
34H8A 40-Channel Single-Ended Multiplexer 

Accessorie. 
34307 A 1 O-pack of J-type thermocouples 
34308A 5-pack of 10 kO thermistors 
34161A Accessory Pouch 
34131A Hard Carrying Case (Transit Case) 
34397A dc-to-ac Inverter 
E2050A LAN/GPIB Gateway 
34970-88010 DMM Field Installation Kit 
Fully calibrated with Test Report and Quick Start Kit 
34905-60001 Kit of 10 5MB-to-BNC adapter 
cables. 500 
34906-60001 Kit of 10 5MB-to-BNC adapter 
cables. 750 

Related Literature 
Accessories for the 34970A Data 
Acquisition/Switch Unit. data sheet 

Practical Temperature Measurements, 
application note 

Pub. number 
5966-4443EN 

5965-7822E 

Agilellt Technologies' Test Ind M.lsurement 
SuPPOrt. S.rvicII. Ind Assistanc. 
Agilent Technologies aims to maximize the value you receive, 
while minimizing your risk and problems. We strive to ensure 
that you get the test and measurement capabilities you paid 
for and obtain the support you need. Our extensive support 
resources and services can help you choose the right Agilent 
products for your applications and apply them successfully. 
Every instrument and system we sell has a global warranty. 
Support is available for at least five years beyond the produc­
tion life of the product. Two concepts underlie Agilent's 
overall support policy: "Our Promise" and "Your Advantage." 

Our Promiu 
"Our Promise" means your Agilent test and measurement equip­
ment will meet its advertised performance and functionality. 
When you are choosing new equipment, we will help you with 
product information, including realistic performance specifica­
tions and practical recommendations from experienced test 
engineers. When you use Agilent equipment, we can verify that 
it works properly, help with product operation, and provide 
basic measurement assistance for the use of specified capabili­
ties, at no extra cost upon request. Many self-help tools are 
available. 

Your Advl_g. 
·Your Advantage" means that Agilent offers a wide range of 
additional expert test and measurement services, which you 
can purchase according to your unique technical and business 
needs. Solve problems efficiently and gain a competitive edge 
by contracting with us for calibration, extra-cost upgrades, out­
of-warranty repairs, and on-site education and training, as well 
as design, system integration, project management, and other 
professional services. Experienced Agilent engineers and tech­
nicians worldwide can help you maximize your prodUctivity, 
optimize the return on investment of your Agilent instruments 
and systems, and obtain dependable measurement accuracy 
for the life of those products. 

!itt ••• i .... cewilll .. your tilt and ................. 11: 
www.agilent.com/find/assist 

Product specifications and descriptions in this 
document subject to change without notice. 

Copyright ~ 1998, 2000 AgiJent Technologies 
Printed in U.S.A. 4/00 
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Appendix A3.2 

Calibration of the Instrumentation used for the Flow 

and Temperature Measurements 

A3.1 Introduction 

This appendix presents the calibration of the experimental devices and uncertainty 

analysis for the validation of the present work. Accrediting the input of our 

experimental work includes refining these inputs for the use in the results and analysis 

get accurate measurements of flow conditions. The level of accuracy of the data is based 

on the measuring procedure, instrument errors and environmental conditions. Errors 

associated with the output of the flow measurements can be eliminated when each 

sensor is well calibrated accurately. 

Therefore, a sequence of calibration procedures were performed and tested, whiles a 

series of analyses are provided to measure the influence of these measurements on flow 

parameters that estimated with some uncertainty 

A3.2 Airflow Measurements 

The air flow rate is determined from the flow velocity measured across a small tube 

diameter (Le. 0.11 m) installed in the chamber in line with the supply input ducts. For 

more accuracy, the measurements were taken at the inputs of ducts locations. The 

airflow rate can be calculated from equation A3.2.1. The estimated uncertainty for the 

air flow rate measurement is ± 5.7%. 

Since the input airflow rate is measured using velocity meter, the accuracy of the 

velocity meter is significant for the calculation of airflow rate. Hence, it is essential to 

pay a close attention to the manufacturers' published accuracies of the velocity meter to 

find out the errors of the input airflow calculated. 
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The air flow calculated is the reference for best measurement we expect from the 

sensors. However, the actual measurement will not so adequate as the theoretical ones, 

the output from the sensors will lead to some errors in the measured value for 

approximately of 5% according to the manufacturers' manuals. Figure A3.2.1 presents 

the velocity calibration for measurements using a rotating vane anemometer LC6000 

(manufactured by airflow, 2001, approved to BS EN ISO 9001). Its standard accuracy at 

20'e and 1013mb is around ±2% for the readings between 5-30 mIs, and ±O.lm/s for 

the readings between 0.25-4.99 mls. 

The airflow calculated is based on the ideal velocities in the catalogue data that is 

corresponding to the best measurement for the velocity of the inlet air. However, since 

the predictable error occurs for the velocity measured, there could be a deviation from 

the airflow rate calculated based on the ideal value. When the velocity is obtained, the 

airflow rate is calculated: 

7t d 2 

Q=60V-
4 

(A3.2.1) 

Where Q (m3/min) is the airflow rate, V (m/s) is the measuring velocity and d (m) is 

the tube diameter at designated plane. From equation A3.2.1, the error in airflow rate is 

0.057m3/min. 
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Fig A3.2.1: Velocity Calibration 
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Figure A3.2.1 shows the calibration of airflow rate against a rotating vane anemometer LC6000. 

A3.3 Temperature measurement 

As the stratification phenomenon of air modeling technique is strongly depended on 

temperature gradient during heating or cooling process, monitoring of temperature is 

necessary throughout all experiments. However, in a built environment, temperature 

sensors were chosen to be sensitive to the small changes of temperature readings. 

Thermocouples type K is simple, rugged, prevalent and low cost contact sensors, where 

the temperature measuring units (HP pinch link data logger) is on hand. 

A thermocouple is a temperature measurement device with two junctions. During 

temperature measurement, the two junctions are placed under different temperatures 

therefore a contact potential voltage is formed. The thermocouple signal is very small, 

normally a few mY, and often requires amplification for successive uses. The value of 

the potential depends on the types of the metals and the temperature of the junction. 

Thermocouples K-type sensors are the most precise and accurate for measuring 

temperatures of stratification in built environment. They are simple, rugged, prevalent 
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and low cost contact sensors. They are also much simpler to deploy and easy service, as 

they are mounted on a single cable rather than dozens of cables. They connect to a 

single data logger channel (20 channels) on a low-cost logger providing an 

instantaneous picture of chamber temperature. 

The thermocouples K-Type were calibrated by using a Platinum one. The medium was 

set to a particular temperature. Thermocouple voltage and Platinum readings were 

recorded continuously. When the temperature was steady for 20 minutes, the medium 

was adjusted for a new temperature and the temperature recording procedure repeated. 

These measurements were taken every 30 seconds while the temperature was increased 

from 10°C to 55°C. 

The calibration factor, for the Aluminum IConstantan coaxial thermocouple, was taken 

as 39.6 ~VI ·C. This value was supplied by the manufacturer. To verify this calibration 

factor, a number of points of temperature versus voltage output were measured and 

plotted in Figures A3.2.3 to A3.2.22 and listed in table A3.2.1. Calibration plot was 

made of thermocouple reading voltages against Platinum temperatures. The fitted 

equations have been found for each thermocouple probe using linear regression analysis 

tool in Excel software. The resulting linear fits shown in Figures A3.2.3 to A3.2.22 can 

be displayed saved and programmed on a personal computer to automatically adjust the 

temperature readings during data acquisition. 

Thermocouples calibrations show that the relationship between the temperature and the 

voltage output of the thermocouples is nearly linear. The output voltage was from 

-1.0 m V to a value of + 1.0 m V (for the temperature from 10°C to 55 °C). The errors in 

temperature measurement were reported in table A3.2.1 and plotted in Figure A3.2.2. 

The slope of a linear fit through the data, revealed an overall average value of 40.26 ~V I 

·C with an overall standard deviation of 1.02 ~VI C. This is very close to the value 

supplied by the manufacturers of the thermocouple (39.6 ~VI 'C), with an overall 

average percentage error of 2.42 % and an overall standard deviation 1.67%. Most 

thermocouples do behave perfectly linearly for temperature ranges (10-55 C) and this 

value might change for different temperature ranges. It is also noted that the model 

uncertainty discussed above is limited to the calibration ranges of certain temperatures 

and flow rates. If the temperatures and flow rates are considerably away from these 

ranges, the model errors are expected to be higher than what we have estimated. 
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Thermocouple Slope Offset Error Error% 
No. JjV/ ' C JjV/ 'C 

1 42.10 1.1714 2.50 5.94 

2 41.60 1.2265 2.00 4.81 

3 39.90 1.1819 0.30 0.75 
4 40.80 1.2032 1.20 2.94 
5 38.50 1.1 703 -1.10 2.86 
6 40.90 1.2340 1.30 3. t8 

7 38.30 1.1802 -1.30 3.39 

8 40.80 1.2435 1.20 2.94 

9 40.90 1.2110 1.30 3.18 

10 41.40 1.2552 1.80 4.35 

11 39.20 1.2012 -0.40 1.02 

12 40.00 0.0000 0.40 1.00 
13 40.30 1.2153 0.70 1.74 

14 41.90 1.2782 2.30 5.49 

15 39.00 1.2026 -0.60 1.54 

16 40.00 0.0000 0.40 1.00 
17 39.80 0.1211 0.20 0.50 
18 40.00 0.0000 0.40 1.00 

19 40.00 0.0000 0.40 1.00 

20 40.00 0.0000 0.40 1.00 

21 40.00 0.0000 0.40 1.00 

Average 40.26 0.66 2.41 

STDEV 01.02 1.02 1.67 

Table A3.2.l shows a review of Figures A3.2.3 to A3.2.22 as well as 

the estimated error, overall average error and it standard deviation 

of the measured values. 

Measurements accurecy 
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Figure A3.2.2 shows the percentage error estimated from Figures A3.3 to A3.2.23. 
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Figure A3.2.3: Calibration results for thermocouple no. 1 
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Figure A3.2.4 Calibration results for thermocouple no. 2 
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Figure A3.2.5 Calibration results for thermocouple no. 3 
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Figure A3.2.6 Calibration results for thermocouple no. 4 
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Figure A3.2.7 Calibration results for thermocouple no. 5 
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Figure A3.2.8 Calibration res ults for the nnocouple no. 6 
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Figure A3.2.9 Calibration results for thermocouple no. 7 
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Figure A3.2.10 Calibration results for thermocouple no. 8 
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Figure A3.2.1l Calibration results for thermocouple no. 9 
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Figure A3.2.12 Calibration results for thermocouple no. 10 
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Figure A3.2.13 Calibration results for thermocouple no. 11 
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Figure A3.2.14 Calibration results for thermocouple no. 12 
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Figure A3.2.15 Calibration results for thermocouple no. 13 
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Figure A3.2.16 Calibration results for thermocouple no. 14 
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Figure A3.2.17 Calibration results for thermocouple no. 15 
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Figure A3.2.18 Calibration results for thermocouple no. 16 
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Figure A3.2.19 Calibration results for thermocouple no. 17 
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Figure A3.2.20 Calibration results for thermocouple no. 18 
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Figure A3.2.21 Calibration results for thermocouple no. 19 
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Figure A3.2.22 Calibration results for thermocouple no. 20 
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Appendix A3.3 

Smoke Generator for Flow Visualization 

Smoke generator for flow visualisation 

Smoke generator unit was used for flow visualization. moke observations were done 

independently from temperature measurements. Vaporized Ondina EL oil (Shell, UK) 

from a lab-built smoke generator unit was introduced to provide a source of smoke at 

the center of environmental chamber. The recommended oil is medicinal quality white 

oil approved for use in environmental applications. The thermal and chemical 

specifications of the generator unit and the oil recommended are listed in the Appendix 

A3.3. 

pecific Gravity 

Visco ity 

Fla h Point 

Auto-ignition Temp 

Combu tibility 

Extinguishing Media 

0.86 at 20 DC. 

14.3 centistokes at 40 ·C 

159 ·C 

Above 250 ' C 

as for hydrocarbons with this fla h point 

C02, dry chemical powder or foam 



A= I.erotech 
Aeradyn mil. Te t I: ment 

SMOKE GENERATOR SYSTEM 

FOR FLOW VISUALISATION IN AIR 

OPERATING INSTRUCTIONS 

The equipment described in this publication must be used only in 

accordance with the instructions given herein. It should be operated 

by suitably qualified personnel, or under their supervision, taking 

care to observe such additional precautions as may be required 

under local health and safety regulations. 



A I.erotech Smoke Generator System 
v4 

SMOKE GENERATOR SYSTEM SGS-90 

OPERATING INSTRUCTIONS 

PRELIMINARY PRECAUTIONS 

Aerotech Ref: Man. 8858 

Do not operate the Smoke Probe in a potentially explosive environment. 

Never apply an electrical supply to the vaporiser unless oil is obviously present 

at the tip, and its flow is uninterrupted. Should the oil feed fail for any reason, 

the power should be switched off immediately to avoid overheating the vaporiser 

element and possibly burning it out. 

Continued use of the probe with an oil flow insufficient for the operating 

conditions can result in the vaporiser's temperature rising above the ignition point 

of the oil. The approach of this situation is signalled by a rapid discolouration of 

the vaporiser through the metallic 'tempering' colours to a luminous cherry red. 

If, at this stage, a thin plume of bluish smoke appears, ignition is almost certain 

to follow immediately. This takes the form of a thin pencil of flame up to 15cm 

(6in) long but, providing the recommended oil has been used, there should be 

little risk of flash ignition or explosion spreading through the surrounding vapour 

loaded air. Nevertheless, the electrical and oil supplies should be turned off at 

once. 

Provided that the electrical element remains intact and there are no significant 

carbon deposits, the vaporiser may still be usable after such ignition. However, 

if the performance is suspect, a replacement vaporiser should be fitted (see 1.4). 

Care should also be exercised when handling the vaporiser during use as 

temperatures in excess of 200°C are generated at the tip and will burn 

unprotected fingers. 
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A I.erotech Smoke Generator System 

MECHANICAL ARRANGEMENTS AND MOUNTING 

Aerotech Ref: Man. 8858 
v4 

The general appearance of the smoke probe and its screw-on vaporiser are 

shown in the illustrations. 

The smoke probe may be attached to any convenient supporting structure by 

means of clamping the stainless steel body (12mm diameter) in a suitable rig. 

In most applications the exit orifice is fixed to a point downstream parallel to the 

local air flow but this may be modified to suit particular experimental conditions, 

subject to unavoidable deterioration in plume quality. Arrangements for 

mechanically traversing the probe or for hand held operation are best devised 

to suit individual requirements. Quotations for special probes with different 

dimensions and shapes to suit particular needs can be supplied on request. 

EXTENSION HANDLES 

If an extension handle has been supplied with this unit, it is not possible to ship 

the Probe and Handle as an assembly and must therefore be assembled by the 

user. To do this, unscrew the two blue plugs on the probe lead, attach the Oil 

Delivery Tube to the probe ensuring it is pushed well on to the small diameter 

stainless steel tube at the bottom. Thread the electrical cable by arranging blue 

plugs piggy back and oil pipe through the handle and secure the body of the 

probe to the handle with two M3 grub screws provided. Re-screw the plugs on 

the probe lead. The unit is now ready for use. If the cable needs to be extended -

add to that existing - DO NOT attempt to replace the existing cable. Any 30V /3a 

capacity is sufficient. 
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OPERATION 

1.0 INITIAL SETTING UP 

1 .1 First check the label on the rear of the unit and ensure that the voltage is 

correct for your local supply. Please also read "Preliminary Precautions" 

on the preceding pages of these instructions. 

1.2 BEFORE CONNECTING TO MAINS SUPPLY - Turn "Heater Voltage" 

knob to "0" also "Oil Flow Rate" knob to "0". Place both pump and mains 

switches to OFF position. 

1 .3 Connect the oil delivery tube from the probe to the "Oil Feed" nipple on 

the front panel. Push fully home. Connect the two blue banana plugs 

from the probe lead to the 4mm "Heater Supply" sockets on the front 

panel. There is no preferred order of connection to these sockets since 

it is an AC supply which is isolated from both the unit chassis and the 

mains earth. 

1.4 Screw one of the vaporisers supplied to the probe tip ensuring a 

reasonable "finger tight" fitting. Take care when fitting vaporisers that it 

is the right way round when introducing it to the probe tip: otherwise 

permanent damage may be caused to the fine heater element wire or its 

encompassing ceramic former. 

1 .5 Fill the oil reservoir bottle (white cap in unit cover) to about 2/3 full with 

SHELL ONDINA OIL EL and replace cap. Ensure that the bottle cap has 

a breather hole drilled into it - do not replace it with the similar cap to be 
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found on the spare oil bottles as supplied by AEROTECH without first 

drilling a minimum 2mm hole through it and its sealing washer. 

1.6 Connect the mains lead to a suitable supply and switch on the mains on 

the front panel. Move the pump switch to DELIVER and increase the OIL 

FLOW RATE to its maximum position (10). The numbers around this 

knob are purely arbitrary and are only intended as a guide in setting up. 

Oil will begin to flow and will be evident at the tip of the vaporiser within 

2-3 minutes of switch on. 

When it appears that the vaporiser is fully wetted with oil reduce the flow 

rate to position 4 and turn the heater control knob to a position 

approximately at 20 - 25V. At this point the oil becomes less viscous and 

begins to drip from the vaporiser more quickly. Within a few seconds it will 

begin to vaporise and a fairly dense plume of smoke will appear. 

WARNING - The vaporiser will now be very hot and will burn fingers!!! 

1 .7 The probe may now be introduced into the air stream (if it is not already) 

and the OIL FLOW RATE and HEATER VOLTAGE adjusted to suit 

prevailing conditions as necessary. 

NOTE: No one air flow situation is the same as another, therefore 

AEROTECH cannot recommend ideal settings. It will be up to the 

individual operator to familiarise him/herself with the equipment 

and make adjustments accordingly. Please take note of the 

preliminary precautions preceding this section. 

1.8 To discontinue use of the Smoke Generator - first reduce the heater 

voltage to zero and allow the pumped oil to flood the vaporiser for a few 
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seconds. This will reduce the possibility of carbon build up in the element. 

Next reduce the oil flow rate to zero and switch off the pump. 

If it is not intended to use the unit again for some time, then switch the 

pump to DRAIN and increase the oil flow rate to maximum. The oil should 

fully drain from the probe and delivery tube within 2-3 minutes. Finally, 

switch off both the pump and the electrical mains. 

1.9 For a short pause in operation there is no need to drain the system. 

Simply reduce the heater voltage and switch off the pump IN THAT 

ORDER. Since the pump speed has not been altered, reactivation is 

soon achieved by switching the pump to deliver and resetting the heater 

voltage to the previous operating setting. 
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2.0 FURTHER NOTES 

2.1 USE IN MEDIUM AND HIGH SPEED AIR FLOWS 

A filled reservoir contains sufficient oil for approximately six hours of normal 

operation of the equipment and during this time the smoke plume should remain 

sensibly constant. It is advisable, however, to check the oil level after every half 

to one hours running in case undetected leaks or accidental misadjustments 

have resulted in excessive loss which could result in the supply to the vaporiser 

becoming depleted. 

2.2 USE IN NEAR ZERO AND LOW SPEED AIR FLOWS 

As the smoke probe continues to function in still air it can be used to determine 

flow patterns in very low velocity air streams. Applications arise in heating, 

ventilating and extracting systems, and many other aspects of environmental 

control and simulation. 

For maximum smoke emission under these conditions the heater voltage is best 

limited to 15 - 20 volts. The oil supply will have to be adjusted accordingly. 

If, after a few seconds operation, oil is seen to drip or spit from the exit orifice, 

the flow must be reduced. On the other hand, if a transparent heat haze extends 

outwards for more than 12mm (O.Sin) from the orifice before condensing into 

visible smoke, either increase the oil flow or reduce the heater Voltage. If this 

extended heat haze is allowed to persist, there is danger of local ignition 

occurring (Preliminary Precautions). 

Optimum conditions exist when the visible smoke plume starts no further than 

3mm (1 /8in) from the exit orifice. 
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As there is no entraining gas, the smoke exit velocity is due only to effects of 

thermal expansion. Although insignificant for most applications, this (and the 

inevitable thermal drift) may invalidate studies of very slow air currents. 

2.3 VAPORISER: MAINTENANCE AND REPLACEMENT 

After several hours of continuous use, the passage of oil over the element 

inevitably results in carbon build up. This cannot easily be removed and 

attempts to poke it out with a wire or needle almost always damages the element 

and its ceramic former. If the generator is to be used intensively, it is 

recommended that two vaporisers are used in rotation. After about 3 or 4 hours 

of smoke generation, the vaporiser should be removed, cleaned in a suitable 

organic solvent or degreasing agent and stored in a caustic soda solution (Sg 

NaOH to 50ml H20) until required. Before refitting, rinse thoroughly in distilled 

water. 

If a vaporiser becomes damaged, unscrew it from the stem of the smoke probe 

and screw on a replacement. Take care to ensure the vaporiser is held correctly 

so that attempts are not made to force the probe connection into the exit orifice, 

thus damaging the wire. 

2.4 REPLACEMENT OF PERISTALTIC PUMP TUBING 

The tubing used in the pump is high grade silicone rubber of O.Smm bore and 

1 .6mm wall thickness. Whilst the oil delivery rate is governed by the tube bore 

and the pump speed and both may be adjusted to suit - the pump rollers are 

designed to operate with only one wall thickness tube (1.6mm) and therefore no 

other wall thickness should be used. Spare tubing can be obtained directly from 

"AEROTECH". 
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If, for any reason , the pump tubing should need replacing , proceed in the 

following manner: 

Isolate the unit from the mains supply and remove the oil reservoir bottle cap. 

Remove 8 chrome screws securing the cover to the chassis and remove the 

cover. 

Lift the perspex cover over the pump to expose the rollers and tubing. Unclip the 

pump tubing from the white retaining plastic clip on the INLET side of the pump 

body and pull upwards gently. At the same time rotate the pump roller 

mechanism by hand in a CLOCKWISE direction. The tubing will disengage itself 

from the rollers with in 3/4 turn when the outlet end can be unclipped. Pull the 

silicone tubing off the stainless steel connectors. Remove any surplus oil from 

these connectors and ensure they are perfectly dry. 

Cut a new piece of tubing 160mm in length and replace in the reverse order. 

Ensure that at least 20mm of tubing is pushed over the connectors and that the 

connectors are well seated in the white plastic clips. This will prevent the tube 

from becoming squashed in the clips and inhibiting oil flow. If the silicone tubing 

and the connectors are perfectly free from oil on assembly there will be no 

reason for these joints coming adrift in use. If however, these joints do come 

adrift then they can be sealed after assembly between tube and connector with 

Dow Corn ing "Silastic 732" silicone adhesive/sealant. 

Finally, replace perspex cover and unit cover. Unit is now ready for re-use. 
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3.0 SMOKE GENERATOR OIL 

The recommended oil is Shell "Ondina EL" (previously 'Ondina 17') or its exact 

equivalent. This is a medicinal quality white oil complying with USA and British 

pharmacopoeias. It is approved for use in pharmaceutical applications and for 

the lubrication of machinery and surfaces used in the manufacture of foodstuffs 

and confectionery. 

Specific Gravity: 0.86 at 20 °C. 

Viscosity: 14.3 centistokes at 40 °C. 

Flash Point: 159°C. 

Auto-ignition Temp: above 250 °C. 

Combustibility: as for hydrocarbons with this flash point. 

Extinguishing Media: CO2, dry chemical powder or foam. 

Boiling Point/Vapour Pressure: not applicable as not volatile. 

In accordance with the Health and Safety at Work Act 1974 Section 6(4)C, Shell 

UK Ltd state that this oil presents no health hazards from inhalation, skin 

absorption, skin contact, eye contact or ingestion, although prolonged over­

exposure of the skin may cause some slight irritation. 
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Being a special solvent-refined hydrocarbon mineral oil, "Ondina EL" is classed 

as 'minimum risk' as far as carcinogenicity is concerned. Even this small risk is 

considered present only where contact is intimate, prolonged and continuous. 

At temperatures above about 300°C or higher (which can occur within the 

vaporiser, depending on operating conditions) some cracked products may form, 

including the possibility of a small proportion of polycyclic aromatic 

hydrocarbons. The latter are considered potentially carcinogenic but (to put this 

into reasonable perspective) so are comparable components in fumes from well­

cooked meats and charring vegetable matter. When in doubt - ventilate 

adequately. 

PROPYLENE Gl yeOl 

In addition to Shell 'Ondina Oil EL' Aerotech has included a 50:50 Propylene 

Glycol de-ionised water mix as an alternative. After initial tests Aerotech feel this 

may be more suitable for this particular application, due to the more rapid 

dispersal of the smoke. However, it is recommended that this medium is 

experimented with to assess suitability. 

When changing between oil types, it is recommended that the existing oil be 

drained from the probe as detailed in section 1.8. 

Specific Gravity: 1.0361 at 20 °C. 

Flash Point: 

Auto-ignition Temp: above 371 °C. 

Combustibility: can support combustion. 

Extinguishing Media: drychem, foam , water or C02 
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Effects: 

v4 

Extremely low oral toxicity. Unlikely to be hazardous by inhalation 

because of the low vapour pressure, however large concentration 

of mist may irritate the respiratory tract. Prolonged or repeated skin 

contact may cause irritation. Causes slight eye irritation by 

permanent damage is unlikely. 
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Appendix A3.4 

Rotating Vane Anemometer LC6000 

Rotating Vane Anemometer LC6000 

The air flow rate is determined from the flow velocity measured acros a mall diameter 

(0.11 m) tube installed in a chamber in line with the supply input ducts. A rotating vane 

anemometer LC6000 (manufactured by airflow, 2001 , approved to B EN I 0 9001) 

was used. Its specification, operating manual and standard accuracy are listed in 

Appendix A3.4. 
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AI RFLOW TM 9020629/G '0103 

~EOALISTS IN AIR !.foYH'ENT TECtI'V" ,r 

LCA 30VT, LCA 30RVT and LeA 30VA 

Operating Instructions 

1. INTRODUCTION 
Models from the LCA range which 
are described in these instructions 
are all rotating vane anemometers 

featuring digital display of Velocity 
(and Volume Flow rate on the 
LCA30VA) in metric or imperial 
units. 



1.1 

1.2 

1.3 

The LCA range has been designed 2. 
for ease of operation with one 2.1 
operaIionaI control on the side of 
the handle. A slide switch is 
provided below the display to switch 
the unit On and Off. Metric and 
Imperial readout can be selected by 
means of a switch in the battery 
compartment. 
The VA model also has an additional 
button on the front of the unit to 
scroll through the menu. 

LCA30VT displays air velocity In 
Metric or Imperial units ranging from 
0.25 to 30 mls or 50 to eooo ft/min. 
The instrument utilises a 
Microprocessor which enables the 
user to obtain a continually updated 
average of air velocity over 
extended periods. 

The LCA30RVT is specially 
calibrated In reverse 80 that the 2.2 
display faces the operator when 
taking extract velocity 
measurema'1t8 such IS at the sash 
windows of fume cupboards or 2.2.1 
laminar flow safety cabinets. 
Calibration results are plotted for 
flows up to 5mls to ensure accuracy 
for low extract velocity situations. 

The LCA30VA displays air velocity 2.2.2 
or volume flow rate in MetrIc or 
Imperial units. Air velocity ranges 
from 0.25 to 3OmIs. 50 to 8000ftImin 
whilst volume flow rate can be 
displayed from 0.01 to 3()()()m3/s. 1 
to 9999991/8. 1 - 999999 m3/hr n:I 
1.0 to 999.9E' cfm (Note; 999.9 x 
10S displays 81 999.9E3) with duct 
cross sectional areas 
programmable within the range of 3. 
0.00399 to 9O.Q0m2, 0.043 to 900.0 
ft2. 

BATTERYINFOAMAnON 
Instruments in the LCA range are 
supplied with a battery but this Is not 
fitted Into the Instrument. 

Oue to the limited shelf life the 
battery is not covered by the AIrflow 
standard warranty. 
To fit the battery preu firmly on the 
battery compartment cover and 
slide It In the direction of the arrow. 
Carefully pull out the battery 
connector and flying leact and fit the 
battery to It. Place the battery and 
lead Into the compartment and refit 
the cover and the screw If 
applicable. The InsIrurnent Is now 
ready for use. 

Do not leave a discharged battery in 
the Instrument or the battery In 
place If the Instrument Is out of use 
for a long period of time. 

'1W»8 of Bdery 
9V batteries type PP3 (lEe 8F22) or 
equivalent, standard, alkaline or 
rechargeable. 

1b Remove • BIdtery. 

Remove the battery from the 
connector using a small screwdriver 
or similar tool. Do not disconnect it 
by pulling on the flying lead. 

Low a.ttery IncllCIItIon 
If the battery voltage falls below a 
pre-determlned level, the display will 
show -bat- In the top left hand 
comer. The Instrument will still 
operate correctly but only for a 
limited time 80 the battery Ihould be 
repIacec:I 81 soon 81 possible. 

~c~mpe~8ISwftch 
All instruments in the range can 
display Metric or Imperial units. The 
metric/Imperial lwitch II In the 



battery compartment, See Fig 1. 

Note: Unit must be off when 
changing from imperial to metric or 
vice versa. 

Figure 1 

4. To Use the Instrument 
4.1 LeA 30VT and LeA 3ORVT: 

Switch on the instrument using the 
on-off switch marked 0, 1 below the 
display. Hold the rotating vane in the 
airstream according to the direction 
of flow arrow on the side of the 
instrument. Allow the vane a few 
seconds in the airstream to enable it 
to reach a steady speed. The 
instrument may then be used in two 
modes: 

4.1.1 A momentary push on the 
switchplate will display the average 
velocity over about a two second 
period. 

4.1.2 pushing and holding down the 
switch plate will display the average 
velocity over the period that it is 
depressed. During this time the 
instrument is programmed to 
display the current average reading 
about every two seconds. If the 

4.2 

instrument is used in this mode for 
long periods, the memory will 
become full after about 12 minutes 
and the display will indicate 'FULL. 
The last valid reading will be 
displayed when the switchplate is 
released. This reading will continue 
to be displayed until the instrument 
is switched off. This erases the 
memory, extinguishes the display 
and makes the instrument ready for 
use again. 
Note: 

4.2.1 Incorrect readings may be 
displayed if the metal plate within 
the anemometer ring is touched 
whilst using the instrument. 

4.3 LeA 30VA (See Figure 2 for Mode 
cycles) 

4.3.1 Velocity Mode 

Switch on instrument to 'VEL' using 
the Mode Button below the display. 
The instrument may then be used 
exactly as described for the LeA 
30VT above (see sections 4.1 and 
4.2). 

4.3.2 Volume Flow Rate Mode 

Before switching on the Instrument 
determine the cross-sectional area 
of the duct, grille etc for which the 
volume flow rate is required. If 
working in Metric units, calculations 
must be in m2. If working in Imperial 
units, calculations must be In ft2. 
Switch the instrument to 'Area +' 
mode observe the area figure 
displayed from the memory. If the 
new area required is larger than the 
one displayed press the sWitchplate 
to increase the displayed area to the 
calculated figure. If the area is to be 
less than the figure displayed push 
the Mode Button to move to 'Area -' 
mode and press the sWitchplate to 
reduce the displayed area to the 



calculated figure. When the correct 
area has been displayed use the 
Mode key to select the required 'Vol' 
mode. 
Note: The last area value will be 
retained in the memory even when 
the instrument is switched off. 

The instrument may then be used in 
two modes: 

[ 

Mode changing uSing the 
Mode Key 

Metric Mode 

1 . 

Volume 
(mhrl 1 
• 

Imperial Mode 

VelOCity 
(fllmlnl 

~ne(cfml l 
t l Area + (tI'') 

L Area (ft) , 

4.32.1 A momentary push on the switch 
plate will display the average 
volume flow rate over about a two 
second period. 

4.3.22 Pushing and holding down the 
switchplate will display the average 
volume flow rate over the period that 

I Area + (mil I 
~ _ 4 

Area (m'l }, 

4.4 

4.4.1 

4.4.2 

Where • .; mode key pressed 
it is depressed. During this time the 
instrument is programmed to 
display the current average reading 
about every two seconds. If the 
Instrument Is used in this mode for 
long peturiods, the memory will 5. 
become II after about 12 minutes 

Figure 2: 

and the display will indicate 'FULL'. 5.1 
The last valid reading will be 
displayed when the switchplate is 
released. 

Notes: 

Incorrect read ings may be 
displayed if the metal plate within 
the anemometer ring is touched 
whilst using the instrument. 

If a flow reading is above the 
displayable range: 'rAnGE' will be 
displayed and the mode button 
should be used to select a larger 
measurement unit if available. 

5.2 

Where to use the instrument. 
Checking air velocity or volume flow 
rate in small areas. 

The instrument will function 
satisfactorily in an angular pOSition 
but should not be used in airstreams 
which are smaller than the entire 
face area of the measuring head 
~113m.m diameter). The LCA range 
IS calibrated for use in free air 
conditions. For smaller airstreams 
the Airflow TA type anemometers 
are recommended. 

Checking air velocity or volume flow 
rate over larger areas. 

When checking air velocity or 
volume flow rate over larger areas, a 
number of 'spot' readings should be 
taken and recorded as described in 
4.1.1 or 4.3.2.1, to give coverage 
over the whole area. 

, 



6. 

Alternatively, the instrument will 
provide the mathematical average 
automatically, when steadily 
scanned across the whole area, If 
used 88 described in 4.1.2 or 4.3.22. 

When taking 'spot' readings, it 
should be noted that quite large 7. 
variations might be obserVed 
between individual readings. In 
general, the more readings taken, 
the more accurate the result will be. 
It does not mattar If the positions of 
the readings overlap somewhat, 80 

long as they are equally spread to 
cover the entire area. 

Uaeon Grilles 
Note: See Comments under section 
8 'Possible sources of error'. Avoid 
intrusiOn of the hand, arm or handle 
of the instrument into the face area 
of the grille. The blockage effect 
created by this would cause 
artificially high velocity over the 
remainder of the grille, leading to 
additional errors. 
Better measuring conditions can be 
obtained on grilles with adjustable 
direction vanes if the vanes on the 8. 
grilles are temporarily str~ 
before making measurements. ThIS 
should not significantly affect the 
flow rate so long 88 any built in 
dampers are not accidentally 
disturbed. It is advisable to use the 
aperture, not the surface area of the 
grille in any flow calculations. 
The instrument is suitable for both 
supply and extract grilles, and the 
procedure for both is the same 
except that the measuring head 
must be rotated through 180" to 
align the direction arrow correctly. 

Whilst it is acceptable to hold the 
anemometer head against the grille 

in extract It Is usually recommended 
to hold It slightly lINay from the grille 
face on supply to avoid excessive 
turbulence and any vena-contracta 
effects. 

U .. In Airway. 
In Large airways the presence of the 
instrument will have a negligible 
effect, but in small airways the 
blockage caused by the Instrument, 
hand and arm will cause the 
airstream to accelerate slightly 88 It 
passes the rotating vane. This effect 
Is somewhat variable depending on 
the size of the airway and the 
distance from the duct walls. The 
error can be virtually eliminated by 
mathematical correction to allow for 
the reduction of free area caused by 
the obstruction. For this purpose the 
effective front ..... of the Instrument 
(not including hand or arm) can be 
taken as O.019m2 (O.204ft2). The 
effect can be Ignored completely If 
the duct exceeds about 500mm 
diameter (1' 9"). 

PoSIlble IOUrc •• of ... ror 
The above method Ignores the 
effects of the reduced velocity at the 
duct Walls. A more precise method 
is shown in as 1042 Part 2.1 (ISO 
3986) log Tchebycheff method. 

This procedure is satisfactory for 
use in ducts, and at unobstructed 
apertures. 

Significant errors may occur If the 
aperture is covered by a grille, 
particularly if this II of the type 
having adjustable direction vanes 
and/or dampers. The airstream 
Issuing from such a grille is 
invariably very disturbed, COIl8iating 
of many small areas of high velocity 



interspersed with areas of low 9. 
velocity. 
The transitions between these areas 
are highly turbulent, and there may 
even be some reversed flow. If 
maximum accuracy is required. it is 
advisable to make up a short length 
of test ducting which is just larger 
than the overall dimensionS of the 
grille. This duct can be of any 
convenient rigid material (eg stiff 
cardboard) and should have a 
length about twice the diagonal 
measurement of the grille. The duct 
should be placed over the griNe, and 
sealed to the wall with adhesive 
tape. Measurements of flow can 
now be conducted, as already 
described, at the unobstructed end 
of the test duct. Use the cross 
sectional area of the duct (not the 
grille) for the calculations. 
It should be noted that using an LCA 
instrument as described in section 
4.1.2 or 4.3.2.2 can result in an 
exaggerated velocity indication in 
applications where there is a 
significant variation in veiocities 
across the test area. This is caused 
by the inability of the rotating vane 
to slow down quickly when being 
moved from a higher velocity area to 
a lower velocity area It is quite 
common to experience situations 
where a factor of 0.9 would have to 
be applied although this varies 
considerably. For proportional 
balancing this does not matter but 
on quantitative measurement it 
should be taken into consideration. 

Uncertainty of Measurement 
Due to characteristics common to 
all rotating vane anemometers, the 
minute amount of bearing friction 
causes the head signal to depart 
from a linear slgnal/Velocity 
relationship by an Insignificant 
amount at high velocities but with 
progressively more effect below 
2m/s (400 ft/mm). In the LeA range 
of Instruments, means of 
compensation for this error is 
provided in the software enabling 
accuracy to be maintained to within: 
:t:1% of reading: :t:1 digit. 

WARNING; ALTERING THE 
CAUBRATION WILL INVALIDATE 
AIRFLOW'S RESPONSIBILITY 
FOR CALIBRATION UNDER 
WARRANTY. 

The unit will monitor each time the 
calibration II effected. 

If the calibration routine II 
Inadvertentfy entered then ABORT 
immediat.,y by switching the 
instrument OFF and then retry. 



10. SERVICE 11. 
AND RECALIBRATION 
If a fault or the instrument's 
calibratiOn Is suspected, it should , 
be returned to Airflow 
Developments for repair or 
recalibration to original standards. : 
In any event, it Is good practice to ' 
have the instrument checked at 
least once a year. If an instrument 
is not working correctly or requires 
recalibration, contact your nearest 
Airflow agent or UK. Service 
Department on High Wycombe 
(01494) 525252 (International +44 
1494 525252). 

Airflow Developments operates an 
Instrument Hire Service for the 
convenience of customers having 
equipment repaired or 
recalibrated. If you intend to take 
advantage of this facility please 
contact the Service Department to 
make arrangements prior to 
returning your instrument. 

CONTACTING AIRFLOW 
Airflow Developments Ltd, 
Lancaster Road 
Cressex Business Park, 
High Wycombe 
Buckinghamshire. HP12 3QP' 
England 

Telephone (01494) 
525252/443821. 
Facsimile (01494) 461073 

E-Mail: info@airflow.co.uk 
WWW: http:/twww.a/rftow.co.uk 

Airflow LutHechnlk GmbH, 
Postfach 1208, 
053349, Rheinbach, 
Germany. 

Telefon: 02226-9205-0 
Telefax 02226-9205-11 

Airflow Technical Product. Inc. 
PO Box 372, 
219 Route 206. 
Andover, 
NJ 07821 USA. 

Telephone: 001-973-786-6386. 
Fax: 001-973-786-7586 

Airflow LutHechnll GmbH, 
o.s. Praha, Ho&tYnska 520, 
108 00 Praha 
10-MaleOlce, 
Czech Republic. 

Telefon and Fax 02-77 22 30 



12. SPECIFICATION 

Parameter Metric Imperial 

Velocity Range 0.25-30 m/sec 50-6000 ft!min 
• Accuracy Calibrated to better than Calibrated to better than 

+/- 1% of reading +/- 1% of reading 
+/- 1 digit. +/-1 digit. 

Volume Flow Ranges 0.Q1 - 3OOOm3/sec 1 - 999.9 x 103~/min 
• Accuracy 1 - 999999 I/sec Calibrated to better than 

CVA only) 1 - 999999 m3/hr + /- 1 % of reading 
Calibrated to better than +/- 1 digit. 
+/- 1% of reading 
+/- 1 digit. 

Air Row Area - Ranges 0.00399 - 9O.00m2 0.043 - ooott2 
CVA only) 

Maximum Averaging time. 12 Minutes 12 Minutes 

Ambient Operating Environment Barometric Pressure Barometric Pressure 
500mb to 2 bar 15 in Hg to 60 In Hg 
Temp -10 to +SOOC Temp 14 to 1~F 

Storage Temperature -10 - +SOOC 14 to +122°F 

Dimensions of Instrument 268 x 113 x 43mm 10.55 x 4.44 x 1.69 in 

Weight of Instrument 280gms 0.621bs 
(less battery) 

Battery Cells One 9V battery type PP3 or equivalent 
(IEC ref 6F22) standard Alkaline or rechargeable 

Battery Ute Approximately 40 Hours 
using Alkaline battery cells 

*Accuracy is at ambient conditions of 20°C and 1013mb (68°F and 30ln Hg.) 

CE Marking: This unit complies with the EEC Directive on Electromagnetic 
Compatibility (EMC) 89/336/EEC. 

Applied Harmonised Standards; ENS0081 -1 Radiated Emissions and EN50082-1 
Radiated and ESD Immunities. 
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ABSTRACT 

An analytical study to investigate small fire in a ventilated 
room is presented. Most existing studies are either numerical 
or experimental and correlations for predicting characteristics 
of flame propagation such as temperature difference, flame 
(plume) length and terminal velocity are based on empirical 
data. A simple mathematical -from the first principles- is 
developed to predict these characteristics. The predictions are 
compared with the published experimental data and good 
agreement has been obtained. Such a simple model would be 
very useful to practicing engineers for fire control programs, 
designing fire detection mechanisms. 

Keywords: Stratified flow, Plume length, Displacement 

ventilation 

NOMENCLATURE 

A 
Cp 
o 
~ 
1< 
L 
m 
q 
q 

Q 

Cross-sectional area, m2 
Specific heat (J kg·IK'I) 
Flame diameter, m 
Acceleration of gravity, ms·

2 

Discharge coefficient 
Flame length m 
Mass flow rate (kg S·I) 
Flow rates of plume 

Heat output intensity (W) 

Heat release (W) 

Rajnish K Calay 
Fluid Mechanics Research Group, University of 

Hertfordshire, College Lane, Hatfield, Herts, AL 10 
9AB,UK 

T 

Ri 

Vent 
U,V 
Z,H 
x, y, Z 

Tel: +44(1707) 281098 
Fax: +44(1707)285086 

r. k.calay@herts.ac.uk 

Temperature K 
Time (s) 
Richardson Number 

Amount of air entrained 

Velocity vector, ms·1 

Flame height 
Descartes coordinates, m 

Greek symbols 

o Stratified layer thickness 
p Density kgm·3 

a Plume entrainment constant 

<I>k Convective heat output (W). 

Subscripts 

o Ambient 

1. INTRODUCTION 

Preventing and managing accidental fires in buildings is a 
major safety concern. Detailed computational and 
experimental simulations and analyses of possible fire 
scenarios are performed in order to design effective safety 
programs and installation of fire prevention equipment. In case 
of fire flame, smoke and toxic pollutants from combustion rise 
upward to the ceiling due to buoyancy. For the removal of 
smoke and safe evacuation it is often desired that pollutants 
remain trapped in stable stratified layers near the ceiling 
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therefore it is useful to know interface i.e. the height to which 
smoke/flame would rise and other stability characteristics of 
the stratified layers. As the smoke is removed from the space 
fresh air enters near the floor level and displacement 
ventilation flow sets in, where essentially is very little mixing. 

Most of these studies [1-8] are experimental or numerical , with 
little analytical work available in the literature. This is due to 
the complexities of the problem and the large number of 
parameters involved. Existing correlations are based on 
empirical data and their validity is problem specific, thus can 
not be employed. However simple mathematical models 
resulting from analytical analysis of the problem is of special 
significance for both scientists and engineers. 

We assume similarity between small fire and strong buoyant 
plume for this analysis . Rooney and Linden [6] investigated 
the similarity between the small fire and buoyant plume. The 
similarity solutions for reduced gravity and plume velocity in 
the strong buoyant case were found to be consistent with 
experimental observations for centerline mean temperatures 
and velocities outside the burning region. However for plume 
entrainment constant, (a=0.083) poor fit to other parameters 
for experimental data of Thomas et al [2). A range of 
entrainment constant 0.11 < a < 0. 15 gave the optimum fit to 
the data of temperature difference vs. depth of hot layer. The 
reason of these poor fits seems to be related to the value of the 
discharge coefficient K = 0.6 which was chosen by Thomas et 
al [2] and Linden et al [3). The best fit for temperature 
difference came from a value of the entrainment constant of a 
=O.13 .Therefore Rooney and Linden found an optimum value 
of K =0.4 for a =0.13 to obtain the best fit. 

It is the objective of the present work to analytically 
investigate the problem of small fire in a ventilated room to 
predict the temperature difference and flame length, terminal 
velocity at three different locations (or plume form a heat 
source). 

2. THEORETICAL BACKGROUND 

The concept of selective ventilation, which utilizes the 
principle of "selective withdrawal" presented by Calay et al 
[9] , is depicted in Figure (I), which shows a general 
representation of withdrawal of a polluted layer of air at 
selected location. 

Figure (I) shows the maximum height under the ceiling, before 
the flame start forming itself as a stratified layer. 

Referring to Figure ( I ), using the thermodynamic definitions 
and laws, the net heat release within the control volume has 

been used to determine the temperature difference I1T : 

Q = mCp l1T (1) 

Po -pgn _ P3 
... - ... - ... _ .. - V3 P 

A3 

z 
Po 

%0 

Figure (1): A schematic diagra m illust rating the Selective 
withdrawal of polluted a ir in a ma nufacturing unit 191. 

Where Q is the net heat release (kW), m = pVS is the mass 

flow rate, C p is the specific heat capacity of air by constant 

pressure and V is the heat supply velocity .. 
Now 

m=pVA (2) 

Where, A is the horizontal cross sectional area of the flow. 
Equation (1) can be written as given below. 

(3) 

Thus, 

Applying thermodynamic internal energy equation at 
combustion point yields: 

(5) 

Thus the vertical velocity of the flame flow is given by : 

(6) 
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For linear motion in the gravitational field, the maximum 
height be reached when the terminal velocity: 

V= =V-gt=O (7) 

or 

v = gt (8) 

H 
Using, t = -, and mUltiplying equation (6) by (8) we get 

V 

(9) 

Assume, H = JA , and by using the discharge coefficient K, 
equation (9) becomes: 

I 

V _ K[ gQ ]3 
pcpHTo 

( 10) 

At the level of stratification, where the height z = Hand 

V H = 0, and by applying Bernoulli equation for this case: 

Substituting equation (10) into equation (11) yields the 
expression of stratified layer (or hot layer) hold-up 

z - Zo = [£];[ gQ ]; (12) 
2g PCp To 

or 

(13) 

Substituting the values of constants in equation ( 13) gives: 
3 

[
K2 ]5 . ~ 

Z = 0.237 2g Q5 + Zo (14) 

The hot or stratified layer hold-up can be evaluated using 
above relationship for different geometries and openings and 

different location of heat source. The discharge coefficient, K 
is the only empirical parameter in this relationship. 

Cases with two different locations of heat sources are 
considered below. 

CASE 1: 

When the heat source is located against the wall, the 
entrainment will be lower than that located at the centre in the 
free plume, and the amount of air entrainment rate is given by 

The amount ofheat release is given by: 

. 3 
Q= -pcpAVTo 

4 

(15) 

( 16) 

3 
Using the discharge coefficient of K = - K , equation (13) 

4 
becomes: 

_ [(3)2 K2 ]~[3 gQ ]~ z- - - - +z 
4 2g 4 PCpTo 0 

( 17) 

CASE 2: 

When the heat source is located in the corner, the entrainment 
will be even lower. The amount of air entrainment rate is given 
by: 

(18) 

The amount of heat release is given by: 

( 19) 

1 
Using the discharge coefficient of K = - K , equation (13) 

2 
becomes: 

(20) 
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The ratio for plume flow rate, elocity and hot layer hold-up 
(maximum height of the flame) between the sources at centre 
location to that at the comer is constant. 

q centre = V cenlrr = 
q com er Vcom~r 

,+--~~=C (21 ) 

From equations (II), (13), ( 17) and (20) the constant is 
calculated as: 1.74 

Similarly the ratio of plume flow rate, elocity and the 
maximum height of the flame. plume located against the wall to 
that at the corner is constant and is gi en by: 

q wall = V "al/ = 
q comer Vcom~' 

(22) 
These relationships can be used to calculate the temperature 
difference, the flame elocity and the stratified hold-up. The 
influence of the discharge coefficient on the predictions is also 
considered in the model. 

3. RESULTS AND DISCUSSION 

The mathematical model was used to solve the plume 
temperature difference, the flame tenninal velocity and the 
stratified layer hold-up in a ventilated room. Equation (13) 
shows a good agreement for flame height calculations at K=O.4 
with the following empirical equation for cylindrical flame 
column [10]. 

2 

H I = O.23Q s -1.02DI (23) 

D, = ~4Q and H, 
qn 

Where, were the cylindrical flame 

column diameter and the height, while Q is the total heat 

release rate in (KW) and q is the heat output intensity (KW). 

Figure 2 shows the predicted flame heights for various heat 
release values using a discharge coefficient of (K=0.443) for 
equation (13 ) and the results obtained from the empirical 
correlation of Rooney and Linden [6], for a fixed value of 
entrainment parameter a=O.13, and discharge coefficient 
K,:O.4. 

5 

2 

1= 0.015Q 5 -1.02D (24) 

Where, I is the flame length in (m), Q is the power output in 

W, and D is the source diameter in m. 

When the heat source is located in the comer of the room 
Equation (20) at K=0.443 was used to predict the flame length. 
And the comparison was made with the data of Bjame et al 
[11] who used the following correlation to fit their data. 

2 

1= 0.083Q5 -1.02D 

where Q the power output in kW. 

Figure (2) Effect of heat release on 
stratified layer hold-up at K=O.443 

(25) 

-Equation (13) • Ref [6] 

0.8 -r===::::::::==============:::: 
0.7 

0.6 

E 0.5 

~ 0.4 

~ 0.3 

0.2 

0.1 

O __ -------,---.----T-__ ~ 
o 3 6 9 12 15 

Q(KW) 

Figure 3 shows the comparison with the experimental data. 

The amount of air entrained in the fire plume was calculated 
using following equation. The heat release rate was multiplied 
by a factor 4 since the fire is located in a comer [11]: 

V = 0.053(4QY'3 {z - ZOf3 
ent 4 (26) 
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Figure (3) Effect of heat release on 
stratified layer hold-up (Case 2) 

- Equabon(20) 

---

6 9 12 

Q(KW) 

15 

t:'igure (4) shows a comparison betv.een the flame lengths for a 
}:) lume located in the comer to that in the middle of the room. 
lne amount of heat release and the amount of entrainment air 
\viII be less compared with that at the middle of the room. The 
Predictions show a good agreement with the results of[6, II]. 

Figure (4) Effect of heat source location on 
stratified layer hold-op 

--Equabon (1 3) • Ref [6] 
.. Ref [11] --Equabon(20) 
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~oth figures (5) and (6) show that; the terminal elocity and 
l)e length of the flame are not only a function of rate of heat 

t-~Iease ( / (Q ) ) but also a function of discharge coefficient 

J ( K ) ). Therefore di charge coefficient and the rate of heat 
t-
~ lease are the most rele ant parameters of the problem, 

cause they influence the momentum and buoyancy forces, 
~d thus influencing the range of the plume velocity and the 

l1gth of the flame . 

The figures (5) and (6) also show that the effect of discharge 
coefficient is much greater than that of heat release after the 
flame reaches the steady state i.e. stratification. 

Figure (5) Effect of heat re lease on term ina l 
veloc ity for different values of discharge 

coefficient K 

--K=O.4 --K=0.443 --K=O.5 --K=O.6 

5 r------------------------~ 

4 

~ - 3 
..!1! 
.§. 
> 2 

o~----------------------------~ 
o 3 6 Q (KW) 9 12 

Figure(6) Effect of heat release on stratified 
layer hold-up for different values of discharge 

coefficient K 

15 
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E 

~ 0.6 

~ 
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Q (KW) 

The effect of discharge coefficient on temperature difference 

T, and so g' (the reduced gravity), when the flame reaches 

the maximum height (z) where the stratified layer starts to 
form is shown in Figure (7). The heat release has no effect on 
L1 T at the level of stratification, while the effect of discharge 
coefficient K is significant. The figure shows that L1 T increases 
with decreasing K, which can be controlled by appropriate 
geometry and designs of the openings. The geometry and 
location of the openings and heat source affect the heat losses 
and the amount of entrainment and thus the amount of heat in 
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the stratified layer, which leads to the stability parameter for 
the stratified layers i.e. the local or gradient Richardson 
number [8] , 

R = _ g OT /(0u)2 
I TOy Oy 

(27) 

At the lowest discharge coefficient, the local R, would be the 

maximum introduced and so the strength of stratification. 
Whilst increasing the discharge coefficient leads to destabilize 
the layer, which is expected due to the large influence from 
convective currents and propagation of the momentum forces 
that leads to decrease the temperature difference and so the 
stability of stratified layers. 

Figure (7) Effect of discharge coefficient K on 
Temperature diff. 6T and reduced gravity g' 

....... 6T(K) _ 10g' 

10 

8 

6 
-g) 

t-"' 
<l 4 

2 

0 
0.4 0.45 0.5 0.55 0.6 

K 

Equations (21) and (22) show that the location of the heat 
source influences the flow rate, velocity, heat release and layer 
hold up. The total flow rate for three similar plumes at 
different locations is a function of their locations. 

q lotal = q centre + q wall + q corner 

or = 2.36qcenlre + 2.98qwall + 4. 12Qcorner 

(28) 

q centre q wall q corner 

q centre 1.00 1.26 1.74 

Q wall 0.79 1.00 1.38 

q corner 0.57 0.72 1.00 

Qlolal 2.36 2.98 4.12 

Table (1): Calculated values of (location ratios) and total 
flow rate for a three similar plumes at different locations. 

Equation (28) and Table (I) indicate how much influence the 
location of the heat source has on the flow and the heat release 
and the effectiveness of the heat source location near wall and 
comer related to that at the centre: 

Q wall 

Q centre 

and 

Q corner 

Q centre 

0.79 (29) 

0.S7 (30) 

Xing and Awbi [12] formulated the flow rate at any height z 
for a line source of plume for that against the wall and that at 
the comer using following equations: 

q lVall (31 ) 

.!.. 5 

q corner = 0.002 <D t (z + Zo)3 (32) 

Where, q] and q2 are the flow rates of the plume against the 

wall and at the comer respectively, while <l> " is the convective 

heat output (W). Using above relationships the ratio of flow 
rate at two locations i.e. at the wall to that at the comer can be 
estimated. 
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q wall q corner 

q wall 1.00 1.60 

qcorner 0.63 1.00 

Table (2): Calculates ratios for two locations (against the 
wall a nd at the corner using Equations (31) and (32). 

The predictions of ratio of different locations using present 
analytical model (Table 1) are comparable with those obtained 
by empirical relationships ofH. Xing and H. Awbi [12] (Table 

2). 

The location of the heat source influences the discharge 
coefficient, thus its effect must be considered in the value of 

discharge coefficient. 

The results and discussion presented above shows that there is 
no unique constant value of the discharge coefficient K, which 
reflects the effect of aspect ratio, geometry and openings in the 
room, and the shape, size and location of the source. The 
correct value of discharge coefficient must be used for any 
analytical , numerical and experimental works in order to get 

good results. 

Published empirical correlations have used different values of 
K ranging from 0.3 to 0.6 in conjunction with another 
empirical parameter entrainment constant a for values ranging 

from 0.083-0.2. 

In the present analytical model there is only one parameter K, 
which needs to be optimized. More research is needed to 
obtain discharge coefficients for a range of room and openings 
geometries. K can also be introduced as a function of other 
measurable variables such as opening area and/or velocity. 

5. CONCLUSIONS 

A mathematical model based on first principles, to predict flow 
scenarios in the case of smal\ fire in a natural\y ventilated 
room is developed. The flow is essentially of displacement 
lype flow leading to stratification. There is only one parameter, 
lhe discharge coefficient K, that depends on geometry of the 
openings and source location and needs to be obtained for 
different cases. Comparison of the present analytical model 
with the previous works shows that the model provides 
acceptable solutions for a whole range of ventilation scenarios 
when used appropriate value of discharge coefficients. 
"Therefore future work wil\ consist of obtaining values of 

discharge coefficients for a range of geometries and flow 
velocities. 

I. The input heat release rate Q of a heat source in a 
ventilated room is not the only parameter that affects 
the plume regions and flame lengths, but also the 
discharge coefficient K. 

2. The effect of discharge coefficient, which also 
indicates the momentum forces effect, on the flame 
length is significant when the flame reaches the 
steady state, thus the transition from stratified flow to 
mixed flow, so it must be taken into account in order 
to predict the flame length, and the other parameters. 

3. The wel1-founded analytical solution can be used for 
the analysis and evaluation of the flame length. The 
model is applicable for all ranges of discharge 
coefficients. The good agreement of the present 
results with experimental data and the published 
correlations is for al\ values of discharge coefficients. 

4. Heat release effect will disappear when the stratified 
layer forms (hot layer hold up or height of the 
interface), while the discharge coefficient has 
considerable effect on the layer stability and can be 
used to detect the flame/plume length independent of 
the rate of heat release. 

5 . The location of the heat source affects the flow rate 
parameters and must be taken into consideration for 
flow calculations. 

6. In the light of the present analytical investigations, it 
can be concluded that additional theoretical and 
experimental information is required for a better 
understanding of the complex phenomena (fire) to 
develop and improve the future models. 
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Stratified flow is encountered in many situations. The flow 
of hydrocarbons transported in horizontal pipes often gets 
stratified. The prediction of pressure drop and liquid hold-up is 
essential for reservoir and pipe management and optimizing 
the cost of transportation of constituents. The present paper 
presents a simple mathematical model to predict the pressure 
drop, water and oil hold up and stratified layer. A good 
agreement with the experimental data was found. The model 
will be further developed and incorporated within a numerical 
model in order to investigate the flow field characteristics and 
establish correlations for a wide range of parameters. 

Keywords: Stratified flow, Two-phase flow, Oil-water flow, 
pressure drop. 

NOMENCLATURE 

A cross-sectional area, m2 
c,n coefficients 
D hydraulic diameter, m 
f Damping function coefficients 

g acceleration of gravity, ms _ 2 
p pressure, Pa 
Re Reynolds number 
S Perimeter 
u velocity in the x direction, ms_l 
U,V velocity vector, ms_l 
v velocity in the y direction, ms_l 
w velocity in the z direction, ms_1 
x, y, z Descartes coordinates, m 

hI Water hold up 

Ahmad Awad 
Fluid Mechanics Research Group, University of 

Hertfordshire, College Lane, Hatfield. Herts. AL 10 9EJ. 
UK 

Tel: +44(1707) 284942 
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h2 Oil hold up 

Greek symbols 
o stratified layer depth 
p density kg.m3 
e water volume fraction 
v kinematics viscosity, m2 s_1 
I.l dynamic viscosity 
t surface tension coefficient Nm 

Subscripts 
ij integer number, 1,2,3 
1 for water 
2 for stratified layer 
3 for oil 

1. INTRODUCTION 

Most industrial flow systems involve multi phase flows. 
Even in single flow systems density difference due to 
temperature gradients such as water flow in reservoirs and 
atmospheric (air/cloud) flow, the flow characteristics resemble 
the multiphase flow systems. 

In oil production oil and water are often produced 
together. Many reservoirs also contain sand, which is brought 
out together with the mixture of oil and water. In pipelines 
generally the mixture is transported over long distances. As the 
production period increases the amount of water in the well 
also increases up to over 90% water fraction. Sometimes 
water is added in controlled amounts to crude oil in order to 
reduce the pressure drop along the pipe-line and reduce the 
pumping power needed to transport oil over longer distances. 

2 Copyright © 2003by AS 



The greatest reduction in pressure drop is expected when the 
water, which is less viscous fluid, fonns a unifonn annulus 
along the pipe surface and oil phase flow within the annulus. 
In addition to this there is a need to separate different 
constituents during the production process. Two phase flow 
are subject to many kinds of instabilities which lead to 
different flow regimes. Figure I shows the schematic of 
various flow regimes. The accurate modelling of flow regimes 
is essential for the proper management of transportation of 
hydrocarbons. The stratified flow is one of the generic flow 
configurations in horizontal or inclined flow systems with a 
finite density gradient. Along the pipeline flow may tend to 
stratify due to density difference of the phases depending upon 
the local flow conditions. 

Several investigations have been devoted to analyse the 
flow characteristics of two phase pipe flow. Hui et. al. [I] 
studded the stratified oil-water two-phase turbulent flow in a 
horizontal tube, by solving the momentum equation through­
out the domain using a volume of fluid model. A time­
dependent numerical simulation was perfonned to obtain the 
final solution that corresponded to steady-state flow 
conditions. The pressure loss, slip ratio, local phase fraction 
profile and the axial velocity profile were verified and 
correlations for pressure loss and oil hold-up were presented. 
It was concluded that the fonnulation was rather complex and 
demands on computational time were excessive. 

O. H. Abdul-Majeed [2] conducted an experimental 
study to develop a data bank used for evaluation and 
improvement of the oil hold-up in a horizontal two-phase flow, 
using an air-kerosene mixture flowed through a test section of 
a horizontal pipe. He showed that the implicit model 
developed by Taitel and Dukler [3] can be accurately 
represented by a single explicit equation, and tends to 
underestimate the hold-up for stratified smooth flow and 
overestimate the hold-up for stratified wavy, slug and annular 
flows. M. Nadler and D. Meewes [4] investigated, 
experimentally, the flow of two immiscible liquids in a 
horizontal pipe, results were presented to show the effect of 
emulsification and phase inversion on the pressure drop for 
different flow regions of two phase oil water mixture. The 
measurements had been conducted for different oil viscosities, 
and no significant effect of temperature on the flow 
characteristics was observed. The results of these experimental 
investigations were presented to imply a good quality for the 
present work comparisons . 

. Newton and Behnia [5] examined the use of stratified flow 
momentum balance for the deduction of interfacial velocities 
and liquid wall shear stresses. They used experimental 
measurements of gas pressure drop, liquid height and gas wall 
shear stress to develop empirical correlations for closure of the 
momentum equations. T. S. Ng et. al.[6] used the Boundary 
Element Method (BEM) to evaluate the integral and local flow 

properties of two-phase laminar-laminar stratified flow in a 
pipe for various interface shapes detennined by exact solution 
of the Young-Laplace equation. They mentioned that "most 
important of integral flow properties, from the industrial and 
practical perspective, are the volumetric flow rates of the two 
liquids, which could be used to detennine the optimal amount 
of water to be injected to minimise the energy requirements for 
oil transportation in pipelines. The computational time was 
very short, and the work could be used as a starting point for 
the analysis of such transitions. 

M. Bonizzi and R. I. Issa [7] presented a mathem­
atical model to simulate three-phase (liquid/liquid/gas) 
stratified and slug flows based on the one-dimensional 
transient two fluid models, in which the two-phases consist of 
the gas and the mixture of the two liquids. The equations were 
solved numerically using a previous developed finite volume 
methodology, and the study revealed that the slip between the 
two liquid phases plays a major role in detennining the slug 
characteristics in three-phase flow. 

Y. Taitel et al [8] calculated the gas/oil/water hold-ups 
for stratified three phase flow, as a first step, for analyzing the 
stability of stratified flow and developing the transition 
criteria. They mentioned that one can obtain three theoretical 
steady state configurations for stratified flow, but only the 
configuration with the thinnest total liquid layer is stable and 
can actually occur 

In this paper we examined the formation of 
stratification in two-phase flow of oil and water flow in pipes. 
Depending on local flow velocity and pressure in pipe the oil 
and water mixture starts to separate into its constituents and 
stratifies. There exists a layer of water at the bottom and a 
layer of oil at the top with an interface where density of the 
mixture varies from oil to water. The purpose of this study is 
to present a simple model to investigate the conditions for 
stratified flow in horizontal pipes and to predict pressure drop 
and liquid hold up for two-phase flow. Locations and the 
thickness of the interface and stability considerations can then 
be studied. 

The prediction with the developed mathematical model was 
conducted and comparison was made with experimental data 
from literature to present the similarities and differences 
between the experimental and analytical predictions. 

2. MATHEMATICAL MODEL 
2.1 Geometrical equations 

The stratified two-phase three layers flow in a 
horizontal pipe as shown schematically in Fig.( I ) is 
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considered. Geometrical equations for areas and perimeters 

can be written in terms of dimensionless heights of hI. h z and 

o. 

8
3 

= D [Jl" + 2 sin -I (2hz -1)] 
2 

8 2 = ll"D-(SI +SJ 

Sl2 = Dcos(sin-I(2hl -1)) 

023 = Dcos(sin-I(2h2 -1)) 

(I) 

(2) 

(3) 

(4) 

(5) 

~here the dimensionless parameters hI, h 2,8 are given by: 

'i: _ _ hI h- h2 s: h2 - hI 
'1 2 = -. and u = (9) 
1- D' D D 

~.2 Governing equations 

Referring to the stratified two phase flow with three 
lqyers shown in Figure (I). and by applying the momentum 
~alance for each these layer, the governing equations, which 
"'-te dependent on volume fractions, velocity and layer 
~imensions can be written as: 

~(PIUI) + O(PIUl
z

) = -op _ TISI + T I2 S 12 

at ax ax AI AI 
(10) 

~(P2U2) + O(pzu;) = -op _ TZS2 _ TlzS IZ + TZ3SZ3 

at ax ax Az Az A2 
(11 ) 

O(P3UJ + O(P3U;) = -op _ T3S3 _ TBSn 

at ax ax A1 A1 - -
( 12) 

From equations (10) and (II): 

(13) 

And from equations (12) and (13) 

( 14) 

Where, the shear stresses and friction factors correlations of 
Taitel et. al. [8], have been used with U as the average velocity 
of the fluid in the specific layer. 

{
O.014 

where, f. = c Re,-n, and f. - max 
I.} - I} 

The coefficients c and n were taken as follows; 

(15) 
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For turbulent flow, 

and for laminar flow, 

{
c = 0.046 

n=0.2 

{
c = 16 

n = 1 

The density and the dynamic viscosity of the stratified layer 
were evaluated using the water volume fraction coefficient 

(8) which was given by [I]: 

P2 = 8PI + (t -0)P3 

and 

The above equations (10 to 14) must be solved 

simultaneously to yield the levels hi, h2 and O. The equations 

are not linear and can have multiple solutions [8]. In order to 
avoid this situation, the analytical solution can be obtained 
using the empirical correlation of ~ui Gao et.al.[ I] defined by 

the oil volume fraction parameter hz 

- [1 .3 1240" ] h = 
2 1 + 0.31240" 

(16) 

where 0" is the oil volume fraction coefficient can be given 

by: 8" = (1- O).The above equation has been used to 

represent the upper layer flow hold-up, and after some 
arrangements it can be rewritten by: 

_ [1.3124(1-0) ] 
h2 == 1- 1 + 0.3124(t - 0) 

(17) 

To evaluate the stratified and non stratified regimes, a 
correction factor C is related to the type of the flow regime [2]. 
Its values were greater than unity for stratified flow regimes 
and always smaller than unity for the others. The following 
correction factor is adopted here; 

( 
\-0216121 

C == 0.528 V,!: V", J ( 18) 

where V.g and V,w are respectively the superficial velocities 

of oil and water .. 

Hui Gao et al. [I] results showed that the oil hold-up values 
were found to be dependent of the oil volume fraction 

coefficient eo in the flow regime, and because the water hold­
up values are to be dependent of water volume fraction 
coefficient e, where eo = (I-e). It is necessary to correlate 
these values with the parameters that control the water hold-up 
in the flow regime. Fig (2) represents such data. The solid line 
is the best fit, which can be represented by the following 
empirical equation: 

-h 0 8-1 
1= ·e ( 19) 

For incompressible fluid flow, where ap = 0, and for 
al 

constant mean stream velocity U. 

The present prediction was applied for stratified two-phase 
three layers flow, and the results were obtained. 

3. TEST CASES AND RESULTS 

A stratified oil-water two-phase three layers turbulent 
flow, in a horizontal tube, has been investigated. Cases, of 
water volume fraction coefficients e varying from 0 to I were 
assumed and the properties of oil were considered at various 
temperatures values for the mixture (18, 25, 30°C). Pressure 
drop and oil and water hold-up for various layers were 
calculated. The comparison with the experimental data was 
made. 

3.1. Pressure drop: 

A comparison between the present predicted pressure 
drop, and experimental data of Nadler and Mewes [4] shows 
that the predicted results agree with the experimental data, for 
the whole water volume fraction and oil dynamic viscosities at 
temperatures of (18, 25 and 30°C mixture temperature). The 
variation in temperature (density and viscosity) also influences 
the resulting flow regime (stratified flow or mixed flow). 
When the correction factor C defined by equation (18) is 
greater than unity the agreements are better. However, the 
great deviation appears, for the velocities where C is less than 
unity. This implies that the transformation of the flow from 
stratified three layers flow to a two phase mixed one takes 
place based on the limitation and assumptions of present work 
analysis. 

Fig. (3) shows the comparison between predicted 
results and experimental data of [4] for oil temperature 18°C, 
the results show a good agreement for that of U=O.3 mis, and 
that of 0.9 mis, it is observed from the figure that the predicted 
results are slightly over predicted compared to the 
experimental data when the water volume fraction e is less 
than 0.56, and under-predicted than the experimental data, 
when the water volume fraction is more than 0.56. The 
absolute average error of 10% was observed between the 
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prediction and experimental results. The results are closely 
matched for that of 1.5 m/s, and the agreement appears in good 
quantitative for low velocities (C<I), and slightly agreement 
for high velocities, where (C> I). 

Figure (4) and (5) show the comparison between predicted 
results and experimental data of [4] for oil temperature (25 and 
30 °C), the results shows a good agreement for low correction 
factors and fluid temperature. At high correction factors (more 
than unity) or high temperature, where increasing temperature 
cause a decrease in oil viscosity which propagates the fluid 
into mixed flow regime the agreement is not good. The 
pressure drop becomes lower than the values predicted. This 
implies that the stratified model cant be applied in these cases. 
For low correction factors (stratified flow) the variations of 
pressure drop with water volume fraction is proportional to the 
decrease in the fluid temperature because of viscosity 
variations, and so the shear stresses. 

3.2. Layers hold-up 

Referring to Figure (2) it shows the agreement of the 

predicted dimensionless heights of h2 equation (16) with 

water volume fraction 9, and the experiment data of GH. 
Abdul-Majeed [2]. The predicted results agree well with the 
experimental data for the whole water volume fraction 9 and 
for all fluid temperatures of (18, 25 and 30°C ). The values 
have been used to represent the geometrical calculations data. 

Figure (6) shows the variations of the predicted 

dimensionless heights of hi' h2 ,0 with water volume fraction 

9 for all fluid temperatures of (18, 25 and 30°C ). The values 
used to represent the geometrical calculations data, and show 
that the variation of the stratified layer thickness () with the 
water volume fraction 9 reaches the maximum value 

(maximum stratified layer thickness Omax) at B = 0.566, 

P w 
which implies the ratio of , so 

P w + P 0 

maximum stability of the stratified layer ( the maximum 
stratification layer thickness) will represented when the 
volume fraction ratio is proportional to the density ratio,( 

when), B .. ::: P.. which implies the phase properties 

B" Po 
weighted ratios J.1 m ' Pm in the mixture. 

4. CONCLUSIONS 

The formulations of correlations for calculating 
pressure drop and layers hold up are based on experimental 
data. It can be used as guide lines for comparing the results 

from more complex and comprehensive numerical models. 
The following conclusions have been drawn in the present 
work: 

I. Stratified two phase three layer flow in a horizontal tube is 
predicted, analytically, using the momentum equation for each 
layer and the empirical equations based on experimental data. 
To predict the pressure gradient the results has shown good 
quantitative agreement with the experimental data of M. 
Nadler and D. Mewes [4] for correction factors less than unity 
for all temperatures values. For low temperature values also 
acceptable agreement for correction factors greater than unity 
was achieved. 

2. The predictions of water, oil and stratified layer hold-up 
was in a good agreement with the experimental data. 

3. The stratified layer thickness 0 reaches the maximum value 
when the water volume fraction e is proportional to water 
density in the mixture. 
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t'igure 1 Schematic of oil-water flow in a pipe showing 
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Figure 3 Comparison of predicted pressure drop with 
experimental data along the pipe at various velocities 
(mixture temperature 18° C) 
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ABSTRACT 

An experimental work was carried out using ceiling jet to supply hot and cold 
air to a confined space, to investigate the effect of jet momentum in breaking and 
mixing the stratified layer. Also smoke visualization were conducted for 
comparison purposes. The flow of high buoyancy was supplied upward, while the 
flow of high momentum was supplied downward from the ceiling. The magnitude 
of momentum needed is depending on the degree of stratification, stratified layer 
interface level height and the stratification conditions. It can be seen that the jet 
momentum has significant influence on the mixing of the stratified flow 
characteristics. The results indicated that once the momentum was initiated a 
mixed flow grew in the occupied zone above the floor. The height of this zone is 
dependent on the stratified flow characteristics, and the temperature and 
momentum of the ceiling jet. 

INTRODUCTION 

Mixing ventilation is where air is supplied into the space with relatively high 
momentum flux, in order that, the air in the space will be mixed to a reasonably 
uniform temperature, yet satisfying the requirement for air speeds. Thus is usually 
achieved by supplying air at high level within the space. For low momentum jet, 
the flow unable to reach the floor due to the stronger stratification layer that 
generated in the lower zone Chow 1996. 
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Convection currents and thermal stratification dominate the flow pattern in a 
large enclosure. Stratification is very common in building with a single large open 
space. Warm air rises under the influence of buoyancy forces, which cause a 
positive temperature gradient between the floor and the ceiling. Activities such as 
heating and welding act as additional heat sources and contribute to already 
existing temperature gradients across the space. 

However, in other buildings where indoor air quality load are important, 
stratification effects can be desirable. Cooling season stratification can reduce the 
cooling loads because warm stratified layer below the ceiling acts as an insulating 
buffer, which reduces the roof and lighting heat gain components. An additional 
reduction in cooling load is achieved by locating the extract at the height of 
stratification because heat extracted per unit of mass flow would be significantly 
higher than if the extract were positional below the stratified layer. There are many 
experimentalists and theoreticians investigated the effect of jets or plums on the 
stratified layer characteristics, (Redondo et al 1996, Cardoso et al 2001, 
Karimipanah 1999, Murakami et al 1996, Bloomfield and Kerr 1999, and Chen 
and Mahoney 2001). 

Redondo et al 1996 used detailed flow visualization as well as density 
measurements in zero-mean-flow laboratory experiments involving grid-stirred 
turbulent mixing across a density interface and bubble-induced mixing. They 
found that the overall mixing efficiency of the processes depends on the local 
Richardson number as well as on the local vorticity. 

Cardoso et al 2001 found from their experimental work that when small 
particles sediment from a surface current generated by an axisymmetric turbulent 
plume, the concentration of particles in the environment surrounding the plume is 
larger at higher levels than at lower levels. This distribution of particles in the 
environment results in unstable density stratification and as a result, convection in 
the environment may ensue. 

Karimipanah 1999. Conducted measurements of the pressure along the 
perimeter of a slot ventilated room for different room sizes. He found that the 
momentum of the jet at the end of the room is decreased with increasing room 
length. He could not predict the corner flows by his CFD simulation using the 
linear eddy viscosity or standard stress models. However he suggested that these 
effects would be captured, by using a second moment closure turbulence model 
with a new near wall approach. 

Murakami et al 1996 proposed a new k-E model includes damping effect on 
vertical turbulent transport due to thermal stratification. They tested the model in 
two-dimensional thermally stratified flow fields (i.e. high and low Reynolds 
numbers flow field within an enclosure). They found that the proposed k-E model 
is applicable to a flow field, which includes both turbulent area and pseudo­
laminar area caused by thermal stratification. Chen and Mahoney 2001 suggested a 
simple multi-layer stratification model for displacement ventilation in a single­
zone building driven by a heat source distributed uniformly over a vertical wall. 
Theoretical expressions were obtained for the stratification interface height and 
ventilation flow rate and compared with similar models. They used a recently 
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developed fine-bubble modelling technique. They concluded that their theoretical 
results were in good agreement with the experimental predictions. 

Bloomfield and Kerr 1999 did an experimental and theoretical investigation of 
the flow and density distribution arising from the upward turbulent injection of a 
dense fluid into a stratified environment of finite extent. They found that as more 
dense fluid is added through either a point or line source, both fountain and the 
environment evolve with time. They have applied their results to two problems: 
the replenishment of magma chambers and the heating or cooling of a room. 

The present study concentrated on the effect of momentum jet on mixing the 
stratified flow using a recently available experimental technique. Smoke 
visulization was used to validate the experimental work and to indicate the effect 
of air jet flow on the stratified flow chracteristics. 

EXPERIMENTAL SET-UP 

All tests were conducted in the test environmental chamber at the University of 
Hertfordshire. The physical dimensions of the chamber were large enough, so that 
the walls didn't affect the flow, and the height was sufficient to the build up of 
stratified layer. The dimensions of the identical rectangular chamber were (7.5m 
long, 3.6m wide and 3.0m height) with two windows (double glazed) isolated from 
an enclosed space. The walls of the test chamber were insulated. The walls as well 
as the roof were of 12.5 cm thick, with white polyester outer finish and 
polyurethane foam interior made. The floor was a layer of light grey colour of 10 
cm thick concrete, and below it a layer of 10 cm thick Styrofoam. 

Transient temperature distributions for the flow inside the chamber were 
measured using eighteen K-type thermocouples. The thermocouples stand was 
inserted vertically on a multidirectional movable base located at the centre of the 
chamber. The junctions of the thermocouples were located at the centres of 
eighteenth equal volumes of the fluid in the chamber. Three thermocouples were 
placed in the inlet hot airflow, inlet cold airflow and outlet. Another was located 
outside the chamber to measure the ambient temperature. All of these 
thermocouples were located to give continuously monitoring of all needed 
tern peratures. 

Concerning the measurements, the test chamber was equipped with sensors to 
determine the air temperatures (thermocouples), as well as, the input air velocities 
and flow rates (A rotating vane anemometer LC6000). A procedure was allowed 
by distributing the temperature sensors to cover the essential vertical and 
horizontal planes within the chamber. This was done by using thermocouple stand 
in the vertical direction, and by moving the base in both directions on the 
horizontal plane. As a result, the measurement points were represented at 15 em 
grid in vertical plane, and 75 cm x 80 cm grid in each directions of investigated 
horizontal plane. 
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Velocity measurements: 

I. A rotating vane anemometer was used to measure both cold and hot 
airflow rates. It was suitable for most applications where the air stream 
was large enough, and the air velocity was ranging from O.25-30m/s. It 
is accuracy at 20°C and 1013mb is better than ±2% for the readings 
from 5-30 mis, and ±0.1 mls for the readings between 0.25-4.99 m/s. 

Measuring Stations: 

I. At the middle of the environmental chamber, to measure the vertical 
temperature gradient from 0.2m to 2.8m above the floor (18 points in total). 
This was done to evaluate the stratified layer characteristics (interface level 
height, stratified layer thickness, temperature profiles and the degree of 
stratification). 

2. At nine locations in the flow direction (x-axis) and six locations across 
flow direction. Each station measured the vertical temperature gradient 
from 0.2m to 2.8m above the floor (18 points in total). This was done to 
study the influence length, unifonnity of the stratified layer. 

3. At different inlet and outlet openings heights. Each station measured the 
vertical temperature gradient from 0.2m to 2.8m above the floor (18 points 
in total). The measurements were taken to evaluate the effect of these 
heights on stratified flow. It can be used to destratify the flow by supplying 
cold air from the top of the chamber and the hot air from the bottom. 

The experiments were done to investigate the effect of jet flow on the stratified 
flow characteristics. The experiments were presented using both cold and wann air 
jet flow. The jet of O.llm diameter was used to inject air vertically downward to 
destroy the stratified layer or flow through it. The injected momentum was 
increased gradually by increasing the jet speeds from (0.0 - 15.0m/s). The injected 
air has an efficient momentum to disturb the surrounding air, and hence the 
temperature distribution in the environmental chamber. With combined effects of 
buoyancy and momentum, the degree of stratification and the flow characteristics 
are being a complement of both the buoyancy and the momentum of injected flow. 
During the experiments the position of the interface and the motion through the 
layers were monitored visually. The jet is located at the center of the chamber, to 
minimize the effect of sidewalls on the detennination of the amount of 
entrainment. A separate rotational fan was used to supply the jet with both hot and 
cold airflow rate. The 0.11 m diameter nozzle was directed vertically, and supplies 
the air with an adjustable flow rate. It is possible to go from the stratified case to 
the mixed case by changing jet airflow rate, thus the relative magnitudes of the 
buoyancy and momentum fluxes. The thennocouples were vertically distributed at 
the stand. The stand was located in the middle of the chamber in order to capture 
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the temperature gradients in the stratified region. A data logger was interfaced to a 
personal computer to collect the flow of temperature signals arriving from the test 
chamber. A video camera images were recorded onto videotape and 
simultaneously to computer hard disk. 

To study the behavior of the stratified flow characteristics under the effect of 
jet momentum airflow, wide temperature and smoke visualization images were 
taken besides the quantitative and qualitative measurements for both stratified and 
mixed flow. 

The experiments were performed according to the following procedure: 

When a steady state is reached and a stratified layer is established between the 
upper and the clear lower zone. The source of momentum (the jet) located at the 
center of the chamber is turned on. The injected air is increasing, while the 
stratified layer is destroying or translating up or downward. 

F or the sequence of vertical jet experiments, the only parameter which was 
changed from one run to the next was the flow rate (stratified flow characteristics), 
while during the run jet speed was changed in the ranges of 0.0 - 15 m/s. The 
thermocouples readings were taken every 10 seconds. The criterion used to infer a 
steady state was based on a 0.2 °C variation during one hour in a reading of any 
thermocouple on the stand. 

Table 1: Details of experimental tests using cold and warm jet 
flow to mix the stratified flow of hot and cold airflow rates as 
listed in the table. For each test, the jet speed was increased 
gradually from (0.0 - 15.0 m/s). 

The Jet Qhot(m3 / min) Q.old(m3 / min) 

Cold Jet 1.0 2.0 4.0 6.0 

= 2.0 2.0 4.0 6.0 
= 3.0 2.0 4.0 6.0 

Warm Jet 1.0 2.0 4.0 6.0 
= 2.0 2.0 4.0 6.0 

= 3.0 2.0 4.0 6.0 
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FLOW PECIFICA TIO AND PRELIMINARY TESTS 

The effect of cold jet momentum has been studied to evaluate the influence of 
cold momentum on the stratified flow characteristics. The jet speed and 
momentum were combined with the temperature profiles to provide the estimation 
of mixing in stratified flow. The momentum was introduced by injecting the cold 
air from the ceiling using a jet source. The temperature of the injected air wa the 
ambient for cold jet flow and was the hot air temperature for the warm jet flow. 
The jet opening size was 0.11 m and the momentums were in the ranges of 0.0 to 
2.17 m4 / S 1 . The flow specifications (velocity, volumetric flow rate and 

momentum) were listed in table 2. 

From the preliminary tests, when the jet momentum is not large enough, or the 
temperature of air injected is less than that of the pre-stratified layer, the injected 
air cannot reach deep stratification heights. In this situation, the flow j t cannot 
activate the mixing in the domain and may stratify at certain levels above the floor. 
The e Ie els of stratification depend on both the momentum and the temp rature of 
injected air, and the stratified layer interface level height. The balance between 
momentum and buoyancy forces in injected air must be adjusted. 

v) (m/s) Q) (m 3/min) M) (m 4/s 2
) 

0.000 0.000 0.000 
0.378 0.215 0.001 

0.756 0.431 0.005 

1.133 0.646 0.012 

1.511 0.862 0.022 
2.267 1.292 0.049 

3.022 1.723 0.087 
4.533 2.585 0.195 
6.044 3.446 0.347 

7.555 4.308 0.542 

9.066 5.169 0.781 

10.577 6.031 1.063 

12.088 6.893 1.389 

13.599 7.754 1.757 

15.110 8.616 2.170 

Table 2: The jet speed (V) , volumetric flow rate (Q) and 

momentum (M) ) used in the experiments. 
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RESUL TS AND DISCUSSION 

Mixing flow using cold jet 

It is known that stratification will happen in the zones of comparatively high 
buoyancy flow. It should be noted that full mixing is assumed to happen for the 
zones of maximum momentum, and the maximum momentum in our case is 
caused by both cold and warm jet. Experimental results for a cold jet of 0.11 m 
diameter were done. It studied the effect of momentum in the mixing of stratified 
flow for a various air flow rates. The present data reveal the effect of various 
speeds of cold jet on the stratified flow characteristics. Comparisons of fifteen 
experimental temperature profiles in entire locations will be discussed. The 
temperature profiles appear to be a dependent of jet speed. 

The flow stratifies at intermediate hot and cold airflow rates, and levels 
somewhere close to the exhaust height. In this case, the injected air can flow 
through the interface without destroying the stable layers. This type of flow has a 
high Ri, where the balance between buoyancy forces and momentum forces are the 
main parameters to control the flow. 

F or intermediate hot and cold airflow rate, the flow will stratify at levels near 
the mid height of the environmental chamber. In this case, the injected air will 
flow through the stratified layer or mix it depending on the amount of momentum. 
More increase in jet momentum will pick it up toward the ceiling before it destroys 
at high momentum, where the whole space becomes fully mixed. 

Figures I to 3, show how the average temperatures profiles change with the 
change in momentum. In the lower zone, the temperature is increasing to reach the 
average temperature of the whole space, while it decreases in the upper zone. The 
temperature of the stratified layer is a complement of both temperatures in the 
lower and upper zones. The results reveal the effect of momentum on the flow 
temperature profiles. As the jet momentum increases, the average temperature in 
the upper zone is gradually decreasing due to the entrainment volume flux, while 
in the occupied zone the increasing is more rapidly due to the radiation heat gain 
into the lower zone. 

Figures 4 to 6 show the effect of increasing jet speed on the temperature 
profiles. It illustrates that the growth and the vertical transport of the stratified 
layer interface level height with increasing jet momentum. As seen in the figures, 
the decrease in the temperature of the lower zone is initially faster due to the 
smaller thickness of the stratified layer, where the injected air can flow through 
without destroying the stable layers. With further increase in jet speed, thermal 
stratification decays and the stratified layer fades away until the temperature of the 
air becomes uniform, while the average temperature is decreasing steadily to 
approach the inlet ones. Also by increasing the airflow rates, comparisons 
indicated that since the momentum is higher, the layer becomes thicker and the 
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mixing in the lower zone becomes larger. It is similar to the re ult of Linden et al 
(1990) that small size of opening resulted in high amount of inflow that work a a 
jet caused the entrainment across the interface, and because of the greater den ity 
of the fluid abo e the interface, the interface descends faster. As the increase in jet 
speed continues the interface moves upward. It is owed to two rea on : 

Firstly, it i due to the temperature difference. Since there is a much 
temperature difference through the interface, the cold air move upward du to th 
heat transfer from the hotter region. Secondly, it is due to the circulation in th 
upper zone, while the air in the lower zone is static. In thi case, th difference in 
velocity generate a shearing force through the interface, and tear out the cold air to 
the upper region, and increase mixing in the flow. 

Exp22cjet -+-0.00 

_ 0.38 

0.76 
45.0 ~1 . 14 

43.0 -:lIE- 1.52 
41 .0 -+-2.28 u 39.0 Q) -+-3.04 

~ 

37.0 ::s - 4.57 -cv 35.0 ~ 
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25.0 12.18 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 13.70 
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-+- 15.22 

Fig. I: Vertical temperature profile for various cold jet speed of 0. 11 m diameter, while 

the flow wa tratified at (Q h = 2.0 m 3 / min) hot airflow rate and 

(Q . = 2.0 m J / min ) cold airflow rate at a locations of 2.0 a nd 1.5 m re pectively at 
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Fig. 2: Vertical temperature profiles for various cold jet speed of 0.11 m diameter, while the flow wa 

stratified at (Q h = 2.0 m 3 / min) hot airflow rate and (Q < = 4 .0 m 3 / min ) cold airflow rate at 

a location of2.0 and 1.5 m respectively at the centre of environmental chamber. 
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Fig. 3 : Vertical temperature profiles for various cold jet peed of 0.11 m diameter, while the flow wa 

tratified at (Q h = 2.0 m 3 / min) hot airflow rate and (Q c = 6.0 m 3 / min ) cold airflow rate at a 

location of2.0 and 1.5 m re pectively at the centre of environmental chamber. 
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Figures 4 to 6 illustrate the effect of momentum on the stratified flow 
characteristics for a case of Qh = 2.0 m 3 / min with different cold air flow rates. 
With the increase in momentum, the temperature profiles indicated the decrease in 
the temperature difference and so the degree of stratification. It shows the 
translation of the stratified layer interface level height with the jet speed, while the 
stratified layer thickness is decreased. 

Comparisons between these figures show no significant effect for the cold air 
flow rates on mixing flow. It is due to the insignificant effect of cold air flow rate 
on stratifying the flow and so on de-stratifying or mixing it. Also the mixing of a 
stratified flow is based on the stratified flow situation when the momentum jet 
starts to mix the flow rather than the initial conditions carried the flow to reach this 
situation. 

The figures also show the decrease in temperature gradient by increasing the 
momentum until it reaches steep values. Therefore, the injected air is flowing 
direct toward the bottom of the chamber, which tends to circulate the flow in the 
lower zone. Since it has a negatively buoyant force relative to the chamber domain, 
the mixing of low momentum will established above the stratified layer pushing it 
downward. Increasing the momentum will increase the deep height of the injected 
air to flow through the stratified layer. More increase in momentum will increase 
buoyant forces in the lower zone under the stratified layer to pick it up until it 
reaches a stable stratification in the upper part of the chamber. This will be 
established with a relatively thin stratified layer separating the hot air in a small 
width layer between the ceiling and the occupied zone. A maximum increase in 
momentum will result in a fully mixed flow in the whole space. 

Figures 4 to 6 give an indication for the design of working zones to be at certain 
height to increase ventilation efficiency, and the clear layer to be above the heads 
of people to escape in cases of smoke and fire hazards. 
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COMBINED EFFECT OF AIRFLOW RATES AND MOMENTUM ON 
STRA TIFIED AND MIXED FLOW 

Effect of both hot and cold air flow rates (Table 2) on the stratified flow was 
studied. The effect of hot airflow rates was more significant. Also experiments on 
mixed flow with different airflow rates were studied. In this section, the effect of 
both hot and cold airflow rates with the presence of momentum using cold jet will 
be analyzed and discussed. 

Interface level height for various values of hot and cold airflow rates with the 
jet momentum, at fixed input and output locations, are plotted in figures 7 to 12. 
The plotted data show that stratified layer interface level height is affected by the 
input airflow rates. While the effect of hot airflow rate on temperature profiles is 
significant (figures 10 to 12), the effect of cold airflow rates is smaller (figure 7 to 
9). 

Figures 7 to 9 show the effect of cold jet speed on the interface level height. 
The results of various values of hot and cold airflow with Qh = 1.0, 2.0,3.0 m1 I min 

andQc = 2.0, 4.0,6.0 m 3 Imin . The results show that the effect of cold airflow rate 

was insignificant for the low and intermediate hot air flow rate, where the stratified 
layer interface level height is competitively high. In general, the results show that 
the effect of cold airflow rates on the interface level heights is more significant for 
high jet momentum than for low jet momentum. Comparison between figures 7 to 
9 and figures 10 to 12 show that the effect of increasing hot airflow rates to mix 
the flow using cold jet flow is more significant than the effect of increasing cold 
airflow rates, especially for the case of high cold and hot airflow. This was due to 
three reasons: 

1. The comparatively significant effect of hot airflow rates, where the source 
of heat in our case was the hot air supply. 

2. The injected cold air was the ambient. The temperature difference between 
the injected cold air and the penetrated hot air that a large part of the air 
entrainment to negative buoyancy for the injected hot air. 

3. The flow was injected vertically from the ceiling to reach the stratified 
layer. At high hot air flow rate, the stratified layer was near the ground, 
while the injected air needs long time to cross the distance between the jet 
and the stratified layer. 

Figure 9 shows that, at high hot airflow rate, the flow will be fully mixed at low 
momentum of (0.5 m4 

/ S2 ) for the cases of low and moderate cold airflow rates. 
On the contrary, the figure shows that to reach fully mixed of high cold airflow 

rate of (6.0 m 3 
/ s ), more than triple times of this momentum will be needed 

(1. 75 m4 
/ S2 ). Figures 10 and 11 show that, the flow will not fully mixed at hot 

airflow rates of (1.0 and 2.0 m 3 / s ) using low momentum jet of « 0.5 m 4 / s 2 ). 
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But the stratified la er interface level height go upward to reach 80% of the 

chamber height at a momentum of(1.5 m 4
/ S2 ). With more momentum, the flow is 

never fully mixed for low hot airflow rate of (1.0 m3 
/ S ) , while it is fully mixed 

for hot airflow rate of (2.0 m 3 
/ S ). 
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Fig. 7: Compari on of interface level height with the jet speed, at hot airflow rate of 

Q h = ) .0 m 3 , min and different cold airflow rates (Q c = 2, 4 and 6 m 3 I min) in the 

environmental chamber. 
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TEMPERATURE AND SMOKE VISUALIZATION 

In this section smoke visualization is included for comparison with the 
experimental results. In general, the experimental and visualization results 
obtained in this work are in good agreement considering that different modeling 
technique, different surrounding conditions, complex flow patterns and turbulent 
dissipations in the domain were found in these experiments. While the 
discrepancies, between the experimental and visualized results are within the 
acceptable range of 2-5%. 

Figures 13 to 18 are the momentum sequence photographs of a stratified and 
mixed flow with initial cold and hot airflow rates of (2 and 6m3/min), 
Richardson number of 2.0 and Reynolds number of 2008. The flow has been 
mixed using a jet of O.l1m diameter. The injected air was in the range of 
(V

J 
= 0.0 to I5.0m/sec). The sequence in the figures shows the effect of cold jet 

flow on the stratified flow characteristics. The results represent the temperature 
visualization. Where sequences of smoke images are refer to different temperature 
distribution. Similar results were obtained with the temperature visualization. 

Comparisons between the sequence figures illustrate the effect of momentum 
on the stratified flow characteristics. As the momentum is increasing, the smoke 
images indicate a more mixed flow in the lower zone and an upward translation of 
the stratified layer interface level height. More increase in momentum causes a 
fully mixed flow at V, = IS.Om/sec. 

The results are so important to design ventilation systems considering the 
pollutants to be above the heads of people in the working zone, which will stuff the 
smoke layer at high level for that enable the people to escape in case of fire 
hazards to be safe from highest temperatures. 

Unfortunately, it was difficult to get good-quality images for mixed cases of 
high momentum jet flows. At high jet flows, difficult flow phases, perturbations 
and fluctuations were introduced, while the flow is more mixed. For this case, the 
stratified layer is more dilute and the interface as well as the deviation of smoke 
refraction became so complicated to capture the images. 
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Fig. 13: Shadowgraph image showing the stratified flow with initial cold and hot 

airflow rates of 2 and 6 m3 imin, Richardson number of 2.0 and Reynold 

number of2008, with no jet flow (Vj = 0.0 m/ sec). 

Fig. 14: Shadowgraph image showing the stratified flow with initial cold and hot airflow 

rates of 2 and 6 m3 i min, Richardson number of 2.0 and Reynolds number of 2008, 

with a jet flow of( V
j 

= 3.0 m/ sec). 
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Fig. 15: hadowgraph image howing the stratified flow with initial cold and hot airflow 

rate of 2 and 6 m3/min, Richardson number of 2.0 and Reynold number of 200 , 

with no jet flow (V
J 

= 6.0 m/ sec). 

Fig. 16: hadowgraph image howing the mixed flow with initial cold and hot airflow 

rate of 2 and 6 m3/min, Richard on number of 2.0 and Reynold number of 200 

with no jet flow ( V
J 

= 9.0 m/ sec). 
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Fig. 17: hadowgraph image showing the mixed flow with initial cold and hot a irflow 

rates of 2 and 6 m3/min, Richardson number of 2.0 and Reynold number of 200 , 

with no jet flow (V
J 

= 12.0 m/sec). 

Fig. 18: hadowgraph image showing the stratified flow with initial cold and hot airflow 

rate of 2 and 6 m3/min, Richardson number of 2.0 and Reynold number of 2008 

with no jet flow (V) = 15.0 m/sec). 
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CONCLUSIONS 

The effect of momentum jet airflow on mIxmg the stratified flow was 
investigated by using experimental techniques. When a momentum of the cold jet 
is higher, a momentum turbulence gain from the momentum source to the lower 
zone increases, which results in change in the average temperature and in an 
increasing in the occupied zone by increasing the stratified layer level height. It 
can be concluded that the jet momentum has significant influence on the mixing of 
the flow and the stratified flow characteristics. The results indicated that once the 
momentum was initiated a mixed flow grew in the occupied zone above the floor. 
The height of this zone is a dependent of the stratified flow characteristics, and the 
temperature and momentum of the ceiling jet. Also the results showed that the 
stratified layer height is a function of the initial jet momentum over a wide range 
of flow rates. These results, despite of different types and values of jet flow, 
showed that the interface level height was approximately inversely proportional to 
the momentum in the case of cold jet, at least over the range of 0.22 - 2.17 m 4 / s 2 • 

Also it can be seen that increasing the momentum will increase the strati tied layer 
interface level height, and more increase in jet momentum will increase the mixing 
in the lower zone and destroy the stratified layer before reaching the ceiling. Also 
it can be noted, that, the effect of hot airflow rate compare with cold airflow rate 
was much higher. For relatively cool jet injected air at high level from the ceiling, 
the entrainment volume flux from the upper zone is large enough. Also the hot air 
domain of penetration occurred in the upper zone. 

REFERENCES 

Bloomfield, L. and Kerr R. (1999). " Turbulent fountains m a confined stratified 
environment". J.Fluid mech. Vo1.389, pp. 27-54. 

Cardoso, S. S. and Zarrebini, S. (2001). " M. Convection driven by particle setting 
surrounding a turbulent plume. Chemical Engineering Science, Vo1.56, pp.3365-
3375. 

Chen, Z.D. and Mahoney, L.J. ( 2001). "Natural ventilation in an enclosure induced by a 
heat source distributed uniformly over a vertical wall. Building and Environ, V 39, 
pp. 493-501. 

Chow, WK. (1996). "Simulation of tunnel fires using a zone model". Tunnelling and 
Underground Space Technology, Volume 11, Issue 2, Pages 221-236. 

Karimipanah, M.T. (1999). "'Deflection of wall-jets in ventilated enclosures described by 
pressure distribution". Building and Environment, 34, pp. 329-333. 

Linden P.F., Lane-Serff G.F. and, Smeed D.A. (1990). "Emptying filling boxes: the fluid 
mechanics of natural ventilation". Journal of Fluid Mechanics, Vol. 212, pp 309-335. 

22 



Murakami S., Kato S., Chikamoto T., Laurence D. and Blay D. Int.J. Heat Mass Transfer. 
1996. Vo139. No.16, pp. 3483-3496. 

Redondo, J.M. Sanchez, M.A. Cantalapiedra, I.R. (1996). "Turbulent mechanism in 
stratified fluids". Dynamics of Atmospheres and Oceans, 24, pp. 107-115, 

23 



The Effect of input and exhaust duct location on the 

stratified flow 

I ., I I A. S. Awad 0. O. Badran- A. E. Holdo and R. K. Calay 

J Department of Aerospace. Automotive and Design Engineering. Faculty of Engineering and 

Information Science. University of Hertfordshire. Hatfield Campus. UK 

! Department of Mechanical Engineering. Faculty of Engineering Technology. AI-Balqa' 
Applied University. P. 0. Box 330116. Amman 11134-Jordan 

Abstract 

This paper discusses the effect of input location (input height), exhaust location (exhaust 

height). airflow rates, on the stratified flow characteristics. The variations for both input 

and output locations and the variable openings of each condition to evaluate the effect of 

these parameters on the stratified flow characteristics were investigated. From the results it 

can be concluded that the input and exhaust locations reinforce each other, while the hot 

and cold airflow rates don't always reinforce each other, but in fact be against each other. 

The results can be used to obtain a good estimation of ventilation flows that aid in the 

design and applications of ventilation systems. The stratification interface level height and 

the ventilation flow rates are two main factors in the design of natural ventilation system. 

Introduction: 

A ventilation of air supply to both occupied and unoccupied spaces within buildings is 

necessary in order to replenish the oxygen supply; to act as a diluted to carbon dioxide. 

odours. process emissions; to prevent the build-up of potentially explosive vapour mixtures 

in the unoccupied plant spaces; to provide air movement, as a constituent part of comfort: 

and to control airborne contamination in industrial ventilation. Inside the enclosures. 

ventilation is used to remove pollutants, harmful gases and particulates from the 

multipurpose space, where different levels of pollutants are produced during different 

activities such as. welding. assembling and painting that take place side by side in one big 

hall. where ventilated air must conform to standards to ensure workers safety. It must be 



supplied into the hall until the contaminants concentration decreases below the harmful 

levels. Calay et al 2000. 

The configurations of building rooms and especially the location of inlet and outlet 

openings in relation to dominant wind direction at the site have major effects on the 

ventilation rates in buildings. Locating inlet openings near high-pressure surfaces of a 

building. and exit openings at low-pressure ones produces higher flow rates through 

windows. Ayad (1999). 

The thennal stratification generated by a localised source of heat at floor level in a 

confined space is of considerable interest to building ventilation. Many sources of heat 

generated in building may be regarded as being localised e.g. computers, occupants etc., 

and knowledge of the developing vertical temperature profile produced by these sources is 

required before air quality and occupant comfort levels can be determined. In general, 

these sources may be classified as either 'pure' buoyancy source, e.g. an electric fire or a 

radiator in a hot water heating system, or as' forced' buoyancy source which characterised 

by no-zero source momentum fluxes, e.g. in a heating system in which warm air is injected 

into space. Hunt and Linden 1999 .. 

Also during spray painting of objects, over spray and solvent vapours stratification layers 

are fonned. These fonned layers may cause an explosion and fire hazards. It may cause 

toxicity by absorption or inhalation of solvent vapours and fine over spray particles, in the 

place of work [Wander (2002)]. As a result, ventilation is used to remove particles of over 

spray to protect the texture of the surfaces already painted and those yet to be painted. This 

can be done, by removing over spray and solvent vapours by the ventilation stream to the 

external environment to be exhausted, Wander (2003). 

Mundt (1994) found that the pollutants could be locked in at different levels (layers of 

pollutants). The distribution of pollutants is very sensitive to disturbances; that can cause a 

great decrease in the local ventilation effectiveness. "In spite of this, or perhaps because of 

this. a person can obtain a good air quality in the breathing zone, even if this zone is in a 

polluted layer. The convective plume around a body breaks through the polluted layers 

very rapidly". 
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The temperature gradient in the room is always positive and increasing up to the ceiling. 

while the contaminants concentration might have another form with maximum somewhere 

in the middle of the room. The temperature gradient is very much dependent on the 

ventilation flow rate and not so much on the position of the heat sources [Mundt (1995)1. 

The contaminant removal effectiveness, in displacement ventilation, was found to be 

related to the ventilation flow rate, and very sensitive to the level of the source and its 

position. Mundt (2001). It was a function of both the location and the power of the 

sources; in relation to the supply and exhaust openings, Hagstrom et al. (2000). 

Wood et al. (2003) established a two-layer stratification and steady displacement flow in a 

room of turbulent plume originating from the top. The results showed that, the interface 

location is not only dependent of the opening geometry but also the source conditions. such 

as location and direction (upward or downward). Further series of computational and 

experimental studies were done by Holford and Hunt (2003) to provide a prediction for 

thermal stratification and airflow rates, by extending the theory of displacement flow 

developed by Linden et al. (1990). The experiments of Holford and Hunt (2003) were 

done on atrium buildings, using zones and field models. An atrium is a central feature of 

many modern naturally ventilated building designs. 

Teitel and Tanny (1999) conducted a theoretical model to study the effect of openings 

height and wind speed in green houses. It was based on non-dimensional mass and energy 

conservation equations. The model was calibrated against experimental results. The results 

showed that ventilation, in greenhouses, was increased by increasing the height of the 

openings, the wind speed, and by decreasing the solar radiation. Mathematical and 

experimental analysis was done by Hunt and Linden (1999) to describe the natural 

ventilation using combined effects of buoyancy and wind. Hunt and Linden (1999) 

derived a mathematical model for stratified layer interface height based on wind speed and 

openings heights. 

The position of neutral buoyancy. (the position where pressure in the room equals that in 

the exterior and the stratified layer is conformed), was investigated by Andersen (2003), 

and Li et al. (2000). Also Fitzgerald and Woods (2004) investigated the effects of 

thermal buoyancy. while Li and Delsante (2001) and Chen and Li (2002) investigated the 

effect of both wind and thermal buoyancy. With vents at multiple levels. using mass. 
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energy and momentum equations, it was found that the position of neutral buoyancy can be 

related to the ratio of the upper and lower vent areas depending on the nature of the heat 

source. 

A relationship between neutral height, for air distribution, and ventilation load was 

investigated by Xing and Awbi (2000). The results of Xing and Awbi (2000) were 

obtained for a ventilated room, under several activities, using displacement ventilation. 

Also the neutral height above the heat source versus ventilation load based on mean 

temperature was investigated Xing and Awbi (2000). 

In this study, the experimental modeling was used to test the effect of input and exhaust 

duct location parameters on stratified layer concentration and buoyancy. It is also 

highlighting the effects of various parameters (i.e. hot and cold airflow rates, height 

difference (between input and the exhaust heights) on stratified flow. 

Experimental setup: 

The experimental set-up used to support these models was presented. The flow parameters 

such as; input airflow, temperature, openings heights and other parameters were used to 

model the stratified flow patterns transactions. 

Experimental Apparatus 

All tests were conducted in the test environmental chamber at the University of 

Hertfordshire that is presented in figurel. The physical dimensions of the chamber were 

large enough, so that the walls didn't affect the flow, and the height was sufficient to the 

build up of stratified layer. The dimensions of the identical rectangular chamber were 

(7.5m long, 3.6m wide and 3.0m height) with two windows (double glazed) isolated from 

an enclosed space. The walls of the test chamber were insulated. The walls as well as the 

roof were of 12.5 cm thick, with white polyester outer finish and polyurethane foam 

interior made. The floor was a layer of light grey colour of 10 cm thick concrete, and 

below it a layer of 10 cm thick Styrofoam. 
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Figure 1: Definition ketch of the experimental layout and the 

thermocouole tand. 

En ironmental chamber flov" ariables were controlled by the means of airflow y tern . 

The tet chamber vent uppl airflow up to 14m 3 / minof hot air, and up to 

12m 3 / min of cold air. The hot air supply temperature was fixed at 45 ° u ing the 

chamber heating and ling}- tern. The ystem can supply air at temperature ranging 

from -40 to 4-50 . The old air upply temperature was the ambient. It wa varied 

according to th ambient temperature and weather fluctuations. The chamb r wa 

insulated and th internal urfa e were painted white, so that the inside of the chamber 

wa i ible from th out ide. The radiation heat transfer between the surfaces could be 

a sumed in ignifi ant. \\h re the radiati e heat transfer was between the wall of th 

chamber. 

Tran ient temperatur di tribution for the flow inside the chamber were measured using 

eighteen -t) pe th rm up Ie . The thermocouples stand was inserted vertically on a 

multidir tiona I m \ abl ba elated at the centre of the chamber as shown in figure I. 

The jun ti n f th th rm ouple \\-ere located at the centres of eighteenth equal volume 

of the fluid in th hamb r. Three thermocouple were placed in the inlet hot airflow, inl t 

cold airflow and outlet. n ther v.a located out ide the chamber to measure the ambi nt 

temperature. II of the th rm ouple were located to give continuously monitoring of 
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all needed temperatures. The experimental results obtained will be used for the validity of 

both analytical and numerical models in the future work. 

Concerning the measurements, the test chamber was equipped with sensors to determine 

the air temperatures (thermocouples), as well as, the input air velocities and flow rates (A 

rotating vane anemometer LC6000). A procedure was allowed by distributing the 

temperature sensors to cover the essential vertical and horizontal planes within the 

chamber. This was done by using thermocouple stand in the vertical direction, and by 

moving the base in both directions on the horizontal plane. As a result, the measurement 

points were represented at 15 cm grid in vertical plane, and 75 cm x 80 cm grid in each 

directions of investigated horizontal plane. 

In conclusion, the experimental methodology has permitted us to obtain complete 

descriptions for the boundary conditions (supply air temperature and flow rate, inside 

temperatures and chamber boundaries), and all measurements were made under steady­

state conditions. 

The past theoretical and experimental studies have revealed that; the following variables 

can affect the stratified flow and flow characteristics in ventilated chamber: 

• Heat loads and temperatures 

• Input flow rates 

• Ventilation openings. 

• Opening heights (inlet and outlet) 

• Geometric size and shape of the ventilated chamber. 

• Thermal properties of the chamber boundaries. 

Velocity Measurements: 

A rotating vane anemometer LC6000 (manufactured by airflow, 200 I, approved to BS EN 

ISO 9001) was used to measure both cold and hot airflow rates. It was suitable for most 

applications where the air stream was large enough, and the air velocity was ranging from 

0.25-30m/s. It is accuracy at 20"C and 1013mb is better than ±2% for the readings from 5-

30 mis, and ±O.I m/s for the readings between 0.25-4.99 m/s. 
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Measuring Methods 

The measuring methods used in this work were listed: 

I. The temperature difference in the vertical direction was measured according to 

absolute difference between the temperatures in the top and the bottom of the 

chamber over the entire air column. 

2. The temperature distribution in the vertical direction was measured at several 

stations along the vertical column (all stations were measured at the centre of 

the chamber between the inlet and the out let). 

3. Input airflow rates for both cold and hot airflow were measured at the ducts 

entries. 

4. The readings were taken at the centre of the environmental chamber, so that the 

walls would not have any significant effect on the measurements such as 

mixing and heat transfer. 

5. The location of thermocouples stand was varied in both directions along and 

across the direction of the flow. 

Measuring Stations: 

1. At the middle of the environmental chamber, to measure the vertical temperature 

gradient from O.2m to 2.8m above the floor (18 points in total). This was done to 

evaluate the stratified layer characteristics (interface level height, stratified layer 

thickness, temperature profiles and the degree of stratification). 

2. At nine locations in the flow direction (x-axis) and six locations across flow 

direction. Each station measured the vertical temperature gradient from O.2m to 

2.8m above the floor (18 points in total). This was done to study the influence 

length, uniformity of the stratified layer and the validity of measurements in 

station I. 

3. At different inlet and outlet openings heights. Each station measured the vertical 

temperature gradient from O.2m to 2.8m above the floor (18 points in total). The 

measurements were taken to evaluate the effect of these heights on stratified flow. 

It can be used to destratify the flow by supplying cold air from the top of the 

chamber and the hot air from the bottom. 
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Measuring Procedure: 

Based on the previous reported analytical, numerical and experimental observations in 

chapter 2, and preliminary experiments, we predicted the following: 

• From the establishment of zones in stratified flow. Stratification takes place at a 

ranges of 0.1 ~ h ~ 0.9, otherwise, the flow may stratified but without zone 

establishment. 

Where h = !:.- , z is the height of the temperature sensor (thermocouple) and H is the 
H 

height of the chamber. 

• From the definition of Richardson number, this is the ratio of potential energy to 

kinetic energy. The best stratification can be at large values of temperature 

difference AT and low values of momentum airflow. 

• To study the stability of the flow, the flow rate values must cover the ranges of 

Richardson numbers based on the input conditions (airflow rates ant temperatures) 

ranging (from 0.08 to Max.), and indicate the stability and the type of the stratified 

flow. 

• Stratification interface level height, stratified layer thickness and stability of the 

stratified flow must be studied at full ranges of openings heights ranging (from 

0.5m to 2.0m). 

According to the above specifications, following are the design sets of experiments. The 

technique used to evaluate the stratified flow characteristics was air modelling. Five sets of 

experiments were carried out. Both cold and hot airflow rates were entered at different 

inputs and outputs heights. Cold air was entered the bottom of the environmental chamber 

with five different values whiles the hot airflow was entered the top of the chamber with 

five different values. Both hot and cold airflow were supplied using rectangular diffusers 

of (0.5 x 0.5 m) for hot air and (1.0 x 0.5 m) for cold air. The diffusers help in admitting 
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the flow with minimum disturbances to establish the stratification in the flow and maintain 

on stratified layer. The experimental data must give the indication of the stratified flow 

characteristics such as stratified layer interface level height, stratified layer thickness. 

degree of stratification and stability. 

The experiments were to study the effect of input hot airflow height on stratified flow. 

Both cold airflow and the exhaust heights were fixed, while the hot airflow height was 

varied. This was done for four different heights (1.0, 1.5,2.0, 2.5). The hot air supply was 

then activated to produce stratification. These experiments were carried out for hot airflow 

rates of (I, 2, 3, 4, 5 m3 Imin) at 45°C, and cold airflow rates of (0, 2, 4, 6, 8 m3 Imin) at 

the ambient temperature. The purposes of this set of experiments were: 

• To study the effect of both hot and cold airflow rates on the stratified flow 

characteristics with various input heights. 

• To study the effect of input height on the stratified flow characteristics. 

• To study the effect of input height difference (between hot and cold airflow rates) 

on the stratified flow characteristics. 

• To study the flow transfonnation from stratified to destratified flow. 

The fourth set of experiments was to study the effect of exhaust height on stratified flow. It 

was similar to the previuos set, except that both hot and the cold airflow heights were fixed 

at certain heights. while the exhaust height was varied for five different heights (0.5. 1.0. 

1.5, 2.0 2.5 m). The hot air temperature for this case was 45°C and the experiments were 

carried out for hot airflow rates of (1,2,3,4,5 m3 Imin). The cold inflow temperature for 

this case was the ambient and the experiments were carried out for cold airflow rates of (0. 

2,4,6,8 m3 Imin). The purposes of this set of experiments were: 

• To study the effect of both hot and cold airflow rates on the stratified flow at 

various exhaust heights. 

• To study the effect of exhaust height on the stratified flow characteristics and 

contaminant removing. 

• To study the effect of height difference (between input and the exhaust heights) on 

the stratified flow. 
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• To predict the best exhaust height be used in designs and applications of ventilation 

systems. 

The last set of experiments was to investigate the mixing process that takes place inside 

the environmental chamber. the growth of the mixed layers, and how to destratify the flow. 

This was done by changing the hot air temperature to be less than the ambient. In this case. 

the hot airflow was the ambient temperature and supply the bottom of the chamber. while 

the cold airflow be fixed at 10°C and supply the top of the chamber. This type of 

experiments was done after complete stratified flow to investigate the effect of changing 

suppliers on stratified flow. The experiments were carried out for (0, 2. 4, 6, 8 m 3 I min) 

hot airflow rates and (I, 2, 3, 4, 5 m3 I min) cold airflow rates. The preliminary test 

illustrates that rapid destratification was occurred. The purposes of this set of experiments 

were: 

• To study the instability and how to destratified the flow. 

• To study the effect of layers overturns on stratified flow. 

• To study the time needed to destratify already stratified flow as time scale affects 

flow energy. 

A total numbers of 21 thermocouples were used (18 on the stand and 2 at the inlets and one 

at the outlet). The thermocouples were vertically distributed at the stand. The stand was 

located in the middle of the chamber in order to capture the temperature gradients in the 

stratified region. Thermocouples that placed at the inlets and outlets were used for 

monitoring the inflow and outflow temperatures. A data logger was interfaced to a personal 

computer to collect the flow oftemperature signals arriving from the test chamber. 

The thermocouples were calibrated against a platinum resistance thermometer. The 

accuracy of the measured temperatures (using a K-type thermocouple) was within 1.0 ·C. 

The inflow rate was measured using a rotating vane anemometer (the accuracy being. 

approximately. withinO.lm 3 Imin. The overall accuracy was a function of the over all 

parameters that affect the flow and the instruments used at certain boundaries and the 

experimental conditions. 
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Smoke Visualization 

Smoke isualization was used as an easy method to display the results in simple form 

being to the human ob er er. moke, as a form of pollutant source was present by 

introducing the smoke into the en ironmental chamber using a smoking machine. 

Photographic flow i ualization records were also prepared using digital camera. A series 

of visualization test were conducted using Aero-tech smoking machine. The tests were to 

study the stratification flow characteristics such as thickness, interface level height, and 

degree of stratification. 

The smoke, initiall , was penetrated with high momentum and turbulent mixing. It mixes 

with the air through the lower zone at the centre of the environmental chamber. On 

reaching the interface Ie el height, the smoke starts to spread out steadily along the 

interface in the stratified region, where it was seen easily in this case. 

From Figure 2 it can be seen that the smoke was ascending and staying in stratified region 

to form a la er of certain thicken . This thickness was a dependent of flow parameters. 

After that the smoke started to evacuate through the exhaust opening, 

Figure 2 badowgrapb image of tratified flow induced by smoke rise at teady state conditions in 
tbe environmental cbamber. 
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Results and Discussion 

Effect of Input location 

Noting that, for our case, the input location was the source of heat release in the chamber 

where hot air was penetrated. This location was considered as an effective parameter to be 

investigated. Various input locations were tested, experimentally, along with several flow 

parameters inside the chamber. The studied locations were (1.0, 1.5, 2.0 m). The 

experiments were done for different ranges of flow rates of hot and cold air corresponding 

to different ranges of Ri > 0.08. The temperature profiles for various values of cold airflow 

rates (0., =0.0- 8.0m' Imir) and input locations, at fixed exhaust location (1.5 m) and at 

comparatively low hot airflow rateQh =2.0m3 /min, are plotted in both figures I and 2 

respectively. The results were in terms of the dimensionless temperature (T - 1'.. )/(T
2 

- 1'.. ) 

with the dimensionless height z/ H , where 1; and 1; being respectively the temperatures at 

the bottom and the top of the chamber, and H is the total height of the chamber. 

For both cases shown in figures 3 and 4, it is observed that the temperature distribution is 

affected by both the input location and the cold airflow rate. While the effect of input 

location on temperature profiles is significant, the effect of cold airflow rates is smaller, 

especially for input location of 1.5 m. The effect of cold airflow rate was much stronger for 

the 2.0 m input location than that of 1.5 m. 

Comparison between figures 3 and 4 shows the effect of increasing the location of hot 

airflow rate from 1.5 m to 2.0 m (i.e. 30% height increase) on the stratified flow 

characteristics while the hot airflow rate was fixed. 

With increasing of input location, the following observations can be made: 

I. It increases the stratified layer interface level height. 

2. It increases the variations of flow characteristics in the upper zone. 

3. It amplifies the effect of cold airflow rates on the stratified flow characteristics. 

Firstly, the higher of the input location yields a higher interface level height; the effects 

were due to the height shift of hot air flow rate that shifted the stratified layer upward in 
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response to the change in elevation of the supply diffuser, so the interface level height. 

From the figures. the increase in stratified layer level height was more than the height shift, 

which is due to both: the height shift and the height difference between hot and cold 

airflow rates that decrease the amount of heat transfer between the zones and the amount of 

mixing and so propagates the flow to stratify. 

Secondly, as input location increases, larger circulation flows are generated in the upper 

region, whereas; smaller ones are formed for low input location. This change of flow fields 

was related to plume strength. which results in different levels of stratification. [Hee-Jin 

aad Dale (200t)]. When input location is located at 1:0 m, no visible stratification level is 

observed. It is because of the hot airflow that directed into the floor before it yields a 

stratified layer. where the spread of hot air beneath the low input location is dependent on 

the input location. as one would expect. Because the penetration distance is decreased then 

the small height is sufficient to prevent hot air reaching the ground. In this case it can also 

be observed that the flow is completely mixed where the penetration distance and the 

interface level height are both found to decrease with decreasing input location. 

[Abdulkarim and Yogesb (1996»). 

Thirdly, the cold airflow rates have a wide domain to affect the flow, especially in both the 

stratified layer and the upper zone. 

From the figures 3 and 4. it can be seen that, when input location is reduced by 25% (1.5 

m), the shape of temperature profile showed less sensitivity to the change in cold airflow 

rate than the (2.0 m) input location. It also can be seen that, the decrease of input location 

of hot airflow rate affects the flow to stratify at lower height while the interface level 

height descends to anain the ground. 

It can be noted that. in the stratified layer. the temperature profiles is more mixed close to 

the upper zone than that close to the lower zone, while it is more mixed in lower zone than 

that in the upper zone. However. as the input location increases or the amount of cold 

airflow rates increases. the interface tends upwards towards the ceiling of the chamber, and 

therefore extends the stratified layer thickness. As a result, the flow becomes more dilute 

and the stratified layer more diffuses. 
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As a heat source supply. the results showed that the input location has a significant 

influence on the flo" characteristics. Figures 3 to 6 illustrates that as the hot airflow rate 

increases. the amount of heat in the upper zone, and the interface level height migrates 

do\\"nwards from the top of the chamber to reach the ground, even though the input 

location is increasing. It also showed that the interface level height seen to increase with an 

increase in the location of hot supply, and to decrease with an increase in the hot airflow 

rate. 

The results show that higher input location offer a stable stratified flow in which the layer 

is built up and becomes strong enough to overcome mixing forces. For this case, increasing 

the hot airflow rates will increase the temperature in the upper zone, and then the hot air in 

the upper region pushes the stratified layer downward. More increase in rate will make the 

layer to lose its buoyancy. In this case. only one type of flow would be observed in whole 

space. It is deduced that when the source is at low location, a large circulation is created 

yielding a lower stratification level. The reverse is applied to the case of higher locations of 

the heat source where momentum based stratification is to form at a higher level. 
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Figure 3: Comparison of dimensionless temperature profile along vertical centreline with 

dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m and fixed hot air 

flow rate (Q h = 2 .0m 3 I min) for different cold flow rates (Qh = O,2 ,4,6,8m 3 I min ) in the 

environmental chamber for 2.0 m innut location. 
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Figure 4: Comparison of dimensionless temperature profile along vertical centreline with 

dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m and fixed hot air 

flow rate (Q h =2 .0m 3 / min) for different cold flow rates (Qh =O ,2 ,4,6,8m 3 / min) in the 

environmental chamber for 1.5 m input location. 
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Figure 5: Comparison of dimensionless temperature profile along vertical centreline with 

dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m and fixed hot air 

flow rate (Q h = 2 .0m 3/ min) for different cold flow rates (Q h = O,2,4,6 ,Sm 3/ min) in the 

environmental chamber for 1.5 m input location. 
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Figure 6: Comparison of dimensionless temperature profile along vertical centreline with 

dimensionless height across the chamber at a fixed axial location of (3.75,2.8) m and fixed hot air 

flow rate (Q h = 2 .0m 3/ min) for different cold flow rates (Q h == O,2 ,4 ,6,8m 3 / min ) in the 

environmental chamber for 1.5 m input location. 
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Typical temperature profiles are shown in Figures. 7 and 8 for input location of heights 1.0, 

1.5 and 2.0 m. It was for various modes of flow rates. The temperature distributions were 

for cases of mixing flow. The figures show the flow was fully mixed for both modes of low 

and high airflow rates. 

Figure 7 show the input locations of no significant effect on temperature profile for a fixed 

mode of flow rates, whiles mode airflow rates has a significant effect on temperature 

difference. At low airflow rates, the flow hasn't sufficient buoyancy forces required to 

stratify the flow, while at high airflow rates the flow has a maximum momentum which it 

is sufficient to break the stratified layer and mix the flow. 

Figure 8 shows the temperature profiles for moderate airflow rates, with a significant effect 

of input locations. When the input location gets higher, a larger temperature gradient is 

created (compared to lower location) in the lower zone. The flow was stratified in different 

degrees of stratifications. This amount of stratification was increasing by increasing the 

input location. It was due to two reasons: 

I. There is an increase in buoyancy forces propagate the flow to stratify compare with 

low airflow rate. On the other hand, there is a decrease in momentum forces that 

break the stratified layer and mix the flow compare with high airflow rate. 

2. As the hot air goes downward, the volumetric flow rate is increased by entrainment 

of surrounding air, and a circulation flow is formed in the region under the input 

location. It is observed that when the input location is low both hot and cold air will 

mix together, which increase the temperature in the lower zone. When the input 

location is higher, the hot air is circulated in the upper region, while the cold air is 

circulated in the lower region yielding a stratified layer in between. 

From the analysis, the input location is not only affects the yielding of the stratified layer 

but also the flow characteristics. Therefore, the strength and size of those circulation flows 

are main factors in characterizing the stratification level [Ree-Jin and Dale (2001»). 

17 



1.:0-
43.0 

410 

£ 39.0 

e 37.0 
::J 

Low & Hi h airflow rate 
~Input height = 1.0 m 
~ Input height = 1.5m 
-o- Input height = 2.0 m 

~ 35.0 -==~:C~~Qi;Q~~~g~g~~Q~e~~~~:::= 8. 33.0 -.-

i 31 .0 
I-

29.0 
27.0 

25.0 

0.0 0.5 1.0 

Low airflow rate 

1.5 

Height(m) 

2.0 2.5 3.0 

Figure 7: Com pari on of temperature profile along vertical centreline with chamber height at low 
and high air flow rate in the environmental chamber for different input locations 

Moderate airflow rate Qh & Qc =3 & 4 mA 3/min 

~Input height = 1.0 m ~Input height = 1.5 m -o-Input height = 2.0 m 

45.0 ~------------------------------------________ ~~, 
43.0 ------ ----------------------__ ....; 

41 .0 

£ 390 

e 370 
::J 
~ 350 

8. 33.0 +---~~--------------------------~ 
E 
~ 31 .0 --~:....---------------------------_1 

29.0 

270 

25.0 -----------------r-----;----~_;_~--___, 

00 05 1.0 1.5 2.0 2.5 3.0 

L Height(m) 

---------
Figure 8: Compari on of temperature profile along vertical centreline with chamber height at 

intermediate airflow rate in the environmental chamber for different input locations. 

18 



Effect of exhaust location 

Exhaust location was another parameter that has been investigated to find if there were 

visible effects on the flow characteristics. Compared with the previous results for the effect 

of input location, the flow characteristics are affected considerably by the exhaust location 

as seen from the results. The dimensionless temperature profiles for various values of hot 

and cold airflow rates, at fixed input location and large values of exhaust locations were 

plotted in figures 7 to 10. The figures show that at exhaust location 2.5m, the temperature 

distribution was affected by the input airflow rates with significant values for hot airflow 

rates, and in smaller values for cold airflow rates. 

These figures also show that the exhaust location does not alter the position of the interface 

level height. It could be in the location above or below the interface level height. Note that 

the exhaust location does influence the flow rate and the level of the interface. In order to 

improve the effectiveness of ventilation and to save heating energy costs, the exhaust 

location must be where "the exhaust temperature should not exceed the temperature in the 

occupied zone" [Hagstrom et al. (2000)]. 

Comparisons between figures 9 to 12 show that the flow can stratify at certain heights 

below the exhaust location depending on the flow boundary conditions. For this the 

opening geometries must be designed to overcome the phenomenon and exhausted the 

contaminants and unneeded gases with high removing efficiency. However, when the 

exhaust location is not at the stratified layer height, but at some way below or above, the 

removing efficiency becomes low. In other words, fixed exhaust location is ineffective to 

exhaust the contaminant rather than the fresh air from the occupied zone, when it designed 

without taking in consideration the stratified flow characteristics. These three flow modes 

will be discussed individually: 

1. The exhaust location is below the stratified layer height. In this case, the cold air 

flows out through the exhaust opening, while the stratified interface level height 

immigrates toward the ground. 

2. The exhaust location is at the stratified layer position. In this case, the stratified 

flow is not established and the transition to mixing flow is observed. This was due 

to the airflows from the stratified layer through the exhaust opening. 
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3. The exhaust location is above the stratified layer. In this case, the hot air flows out 

through the exhaust opening while the stratified interface level height immigrates to 

reach the top of the chamber. 

It is seen that the degree of stratification for case 1 is considerably higher than that for case 

3. Where a higher exhaust location will tends to higher level of stratification. On the other 

hand, a lower location may result in lower levels of stratification. For these three cases, the 

stratified interface level height will move up and down to maintain on the stratified layer. It 

could be fixed by distributing the exhaust location vertically. 

From the figures, it can be seen that, the exhaust location is a key factor in stratification 

phenomenon and so in ventilation process. It is important in the evaluation of the flow 

characteristics in ventilated rooms. When the exhaust location is situated in the upper zone, 

the exhausting of fresh air is large and the concentration of contaminants in the lower zone 

is too high. On the contrary, when the exhaust location is situated in the lower zone or 

close to the stratified layer interface, the contaminant removal effectiveness is larger. Very 

similar suggestion was obtained by Mundt (2001) that the source of contaminant must be 

in the upper zone to be exhausted at large effectiveness. 

The increase in hot air flow rates increases the degree of stratification, but further increases 

in hot air flow rate produce little further increase in degree of stratification. Whatever the 

explanation for these observations, the results of figures 9 to 12 could provide a useful 

indication for this case. 

From the results, while the input and exhaust locations reinforce each other, there are hot 

and cold airflow rates are in evidence that they don't always reinforce each other, but in 

fact be against each other, as found clearly from the results. 
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Comparison between figures 13 and 14, show the effect of increasing exhaust location on 

the stratified flow characteristics. However, for this case: 

I. It increases the stratified layer height, due to the height shift, and decreases the 

temperature difference and so the degree of stratification due to the evacuation of 

fresh hot air from the upper zone. 

2. It increases the significant effect of cold airflow rate due to the wide domain in the 

lower zone where both the mixing and the influence length will increase. 

In the analysis above it has been seen that increasing the exhaust location was resulting in 

an extended stratified region with less temperature difference and so the degree of 

stratification, which tends to destratify the flow, which it is similar to the results obtained 

by Linden et al. (1990), using filling boxes, that when the output location some where 

down the ceiling, the amount of mixing was so greater and the interface was diffused. 

Figures 13 and 14 show how the dimensionless temperature distribution varies depending 

on various exhaust locations. The figure show that the temperature does not vary linearly 

over the chamber height and it can be divided into three zones. While the height of the 

lower zone is changing with the source location, the upper zone is well fixed for various 

source locations. While temperature remains constant in the lower and upper zones, 

(except at 2 m case) temperature in the stratified zone changes linearly. 

Figure 14 shows temperature distribution according to the change of exhaust locations 

when a low airflow rate is used; by the change of exhaust location without changing input 

location the degree of stratification show a visible change. The results show the effect of 

increasing exhaust location. When the exhaust location increases the degree of 

stratification becomes better. 
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Smoke Visualization of exhaust locations 

smoke visulization was also used to evalute the stratified flow characteristics with variable 

exhaust locations. The results of temperature profiles and smoke visulization show that 

both models can give the same indications for the flow characterstics of various values of 

exhaust locations. The results of smoke visulization were shown in the figures 16 to 21. 

In figures 15 and 16, it is seen that when the exhaust height was low, the smoke penetrates 

and emerges in the stratified layer. There are two reasons for this: 

Firstly, when the stratified layer interface level height is low enough then the 

smoke will emerge in the stratified layer under the effect of high upward buoyant 

forces, where smoke is still warm compare with the relatively cool lower zone, 

cross temperature differences did, however, provide a source of potential energy 

which drive the smoke to rotate downward. 

Secondly, when the stratified interface level height is low, the entrainment air from 

the lower zone to the smoke plume will be at minimum, for this case, the smoke 

velocity will be high enough to reach the maximum height at an elevation above the 

interface level height. However, if the exhaust is in the upper zone, then the 

velocity reaches its minimum value at an elevation below the exhaust location as 

seen in figures 17 and 19. 

Figure 18 show a very thin interface layer between the upper hot and lower cold zones. As 

shown in the figure, the temperature gradient is very high in the stratified layer, due to the 

high mixing in the upper hot and lower cold zones, whiles the mixing betwween these 

layers is very limitted. 

A combined effect of high exhaust location and high cold airflow rate is shown in figure 

20. The results show how they reinforce each other and the flow is stratified near the 

ceiling. It is interesting to note that when the location of the source gets higher, a larger 

temperature gradient is created (compared to lower source location) in the region above the 

heat source. 
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Figure 15: A sbadowgrapb image showing stratification induced by smoke visualization, at steady 
state, for ~ =2oOm, ~XI = l.Om, Q, = l.Om3 Imin and {1 = 600m3 Imin. 

Figure 16: A shadowgraph image showing stratification induced by smoke visualization, at steady 

state, for Hh =2oOm, ~XI = l.Om, Q, = l.Om3 Imin and {1 = 600m3 Imin. 
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Figure 17: A sbadowgrapb image sbowing stratification induced by smoke visualization, at steady 

state, for ~ =2.Om, H
ext 

=1.5m, Qh =2.Om3 / min and Qc =8.0m3 Imin. 

Figure 18: A sbadowgrapb image sbowing stratification induced by smoke visualization, at steady 

state, for Hh = 2.0 m, li.xI =2.0 m, G. = 1.0 n? Imin and Q, = 8.0 m3 /min. 
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Figure 19: A sbadowgrapb image sbowing stratification induced by smoke visualization, at 

steady state, for Hh =2.0 m, H.xl =2.0m, g, =1.0"; Imin and Q, =8.0m3 Imin. 

Figure 20: A sbadowgrapb image sbowing stratification induced by smoke visualization, at 

steady state, for Hh = 2.0 m, H.xl = 2.0 m, g, = 1.0"; / m in and Q, = 8.0 m3 I min. 
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Conclusions 

The effects of both input and exhaust locations on the stratified flow characteristics were 

investigated. When a location of input location is higher, the buoyancy forces is increased 

with a sufficient amount to stratify the flow, whiles for the decreasing of input location, the 

interface level height is decreasing downward to reach the ground, yielding a mixed flow 

in both zones. The temperature distribution in the upper zone is somewhat independent of 

the location of input location unlike the lower zone. The results also show that the level of 

stratification is affected by the exhaust location, 

From the results it can be seen that the input and exhaust locations reinforce each other, 

while the hot and cold airflow rates don't always reinforce each other, but in fact be 

against each other. 

It can be concluded that the stratified flow characteristics are dependent upon the flow 

parameters and the geometry of the space (opening locations). The designing of opening 

heights can be used for controlling the flow characteristics such as mixing or maintaining 

the flow of the stratified layer. 
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Abstract 

This paper presents an experimental investigation of flow scenarios that lead to stratification 
within the ventilated enclosures. The effect of supply terminal at various airflow rates on the 
flow characteristics is experimentally investigated. It has been found that relative influence of 
inertia and buoyancy forces resolves the stratified flow characteristics. The stratification 
interface level height and the ventilation flow rates are two main factors in the design of natural 
ventilation system. The results can be used to obtain a good estimation of the effectiveness of a 
ventilation system at design stage. 

Keywords: Stratified flow, Natural ventilation, Temperature distribution 

Introduction 

Thermal stratification is often dominant 
feature of the flow characteristics within 
ventilated buildings. There may be many 
heat sources such as occupants and 
equipment within a room that acts like heat 
sources and thermal plume develop around 
them resulting into a vertical temperature 
gradient. These sources may develop pure 
buoyancy driven plumes or mixed 
convection jets as in the supply of hot air in 
mechanical heating systems. Generally such 
jets or plumes propagate entraining air from 
ambient to a height where the temperature 
within the jets becomes equal to the ambient 
temperature. At this height flow becomes 
stratified and there may be a zone above or 
below the stratified zone where flow is 
mixed i.e. the temperature profile is 
uniform. 
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It has been shown that the flow region is 
usually divided into zones characterised by 
temperature gradient. The temperature 
gradient within the enclosure is influenced 
by ventilation flow rate and not so much by 
the position of the heat sources. Thus 
contaminant removal effectiveness, in 
displacement ventilation, is influenced by 
the ventilation flow rate and also sensitive to 
the level of the source and its position [1, 2]. 
The vertical position of the interface is also 
related to the ratio of the upper and lower 
vent areas depending on the nature of the 
heat source as shown by Fitzgerald and 
Woods [3]. 

For maintaining air quality and thermal 
comfort any ventilation system must ensure 
that (1) the interface between the thermally 
stratified zone and clear zone is adequately 
high to keep the working zone at a desirable 
temperature and clear of any pollutants and 
(2) the thickness of the stratified zones are 



large enough to contain all the pollutants 
within. Therefore the under tanding of the 
mechanisms of the flow pattern leading to 
stratification i particularl important for 
displacement entilation s stem and 
naturally entilated buildings. 

Various experiment ha e been reported on 
the study of the flow characteri tics for 
displacement and natural entilation and 
information i a ailable on plume 
development due to single and multiple heat 
sources and the de elopment of zones 
within confined paces [5, 6, and 7]. Most 
experiments b Linden et al were performed 
using scale models and alt-bath technique 
[5]. However, it i not always po sible to 
maintain similarity for both momentum and 
heat transfer in the model due to differences 
in the propertie of air and water. The 
current experimental study in e tigates the 
flow characteristics within enclosure due to 
the temperature and momentum differential 
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across the enclosure. In particular the focus 
is on studying the effect of positioning of 
the inlet and outlets and the flow rates on the 
vertical temperature profiles in order to 
evaluate the characteristics of stratification 
namely height of the interface, the thickness 
and the stability of stratified layers. 

Experimental setup: 

All tests were conducted in the 
environmental chamber at the University of 
Hertfordshire (Figure 1). The test chamber 
(enclosed by another room) was 7.5m long, 
3.6m wide and 3.0m in height. The walls 
floor and ceiling were well insulated by 
polyurethane foam. During the tests the 
temperature in outer space was also 
maintained close to the inside temperature to 
minimise the heat transfer from the test 
room to the surroundings. 

3.0 

Measurinl! I!rids 

Figure 1: Definition sketch of the experimentaJJayout and the 

The inflow parameter were controlled by 
the en ironmental control systems. The air 
treatment plant con isting of heating 
batteries and a cooling unit, can upply 
airflow up to 14m3/min. The system can 
supply air at temperatures ranging from -
40·C to +50·C. The upply and extract 
locations can be po ition d at an po ition 
within the room. The ertical temperature 
measurements within the chamber were 
made u ing a ertical array of eighteen K­
type thermocouple - 15cm apart a hown 
in Figure 1. uppl and extract flow rates 
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and velocities were also monitored using a 
rotating vane anemometer was used to 
measure airflow rates at the supply inlets. 
The accuracy of the velocity measurements 
was ±2% for the readings from 5-30 mIs, 
and ±O.lm/s for the readings between 0.25-
4.99 m/s. 

Experimental Procedure 

Preliminary experiments were performed by 
adjusting the supply air flow rates and 
temperatures to set up zones of stratified 



flow within the enclosure. The input 
location for cold and hot air uppl was at 
different heights. The hot and cold air was 
supplied into the cham ber to create a 
temperature differential acro the height of 
the enclosure so that tratified flow is 
established. Initially cold air wa entered at 
the bottom of the en ironmental chamber 
and the hot air was near the top of the 
chamber. Flow visuali ation wa done using 
an oil-based smoke machine in order to 
study flow characteristics identifying the 
location of the interface and stratification 
layer thickness. To study the characteristics 
of the stratification of the flow ertical 
temperature measurement were taken at the 
centre of the en ironmental chamber, where 
walls would not ha e any ignificant effect 
on the measurement. Mea urement were 
also made at other locations in the horizontal 
plane in the flow direction (x-axis) and 

across the flow (z-axis) to study the 
temperature variation within the wider space 
and to estimate the influence of the 
momentum source on the interface height. 
The experiments studied the effect of the 
location and flow rate of in flow of hot air 
and cold air on the stratified flow 
characteristics. The air inflow rate was 

aried from (l-5m3/min). The tests allowed 
us to study the effect of both hot and cold air 
in flow rates and locations of the supply 
ports on the stratified flow. 

Results and Discussion 
Flow visualization 

The flow visualisation using smoke provides 
the qualitative information of the flow 
characteristics within the room. Figure 2 
shows a typical photograph of the three flow 
zones. 

Figure 2 Typical i uali ation of now patterns showing three distinct zones 

Smoke penetrates the lower mixed zone and 
spreads horizontally at certain height and 
stay within thi region to form a layer of 
certain thickness where the flow direction is 
only in the horizontal plane. In this case 
flow is dri en by the extract and moves in 
the direction of the exhau t opening. The 
interface between the stratified and mixed 
zones is also clearly isible. The thickness 
of the stratified layer and the location of the 
interface depend upon flow parameters. 
Generally there i always an increa e in 
temperature with the height and flow 
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stratifies from the floor to the ceiling 
without zone establishment. However, 
when designing displacement ventilation 
in tallation it is important that there is stable 
stratified zone located above the working 
zone. Thus vertical temperature gradients 
are presented to study the conditions that 
lead flow to form into distinct zones. From 
these the interface location, stratified layer 
thickness and degree of stratification can be 
estimated. Temperature profiles are plotted 
in terms of the dimensionless temperature 
(T-Tc)/(Th-Tc) along a vertical height with 



Th and Tc being respectively the 
temperatures at the ceiling and the floor of 
the chamber and versus dimensionless 
height zlH. Figures 3a and 3b show the non­
dimensional vertical temperature variation 
with respect to the non-dimensional height 
for two different cases. The hot air input 
location is fixed at 1.5m for both cases. The 
flow is divided into three zones (Figure 3a), 
whereas there are only two flow regimes as 
shown in the Figure 3b. Flow is stratified 
starting from the floor to some height 
(z/H-Q.2) and then temperature gradient 
becomes smoother in the upper region. In 
this case the hot air flow rate was increased 
from 2m3/min to 3m3/min, which not only 
resulted in higher momentum but there was 
slight increase in the heat input into the 
enclosure. Initial momentum is increased 
which resulted in better heat transfer due to 
mixing and the higher temperatures are 
extended further down towards the floor. 
The stable stratified layers are also pushed 
towards the floor. Although the flow 
parameters were estimated using the overall 
dimensions of the enclosure in order to 
investigate the combined effect of different 
mechanisms within the room, the change in 
parameters (Re) is due to change in the hot­
air supply, thereby the change in the flow 
characteristics is more apparent in the upper 
region which is more affected by these 
changes. Figure 4 shows the vertical 
temperature profiles for a changed position 
of the hot air supply for the same range of 
flow parameters as in Figure 3a. Despite a 
shift from 1.5m to 2m the temperature 
profiles are similar and the flow region is 
divided into three zones. It is obvious from 
the figures (Figure 3a and Figure 4) that for 
the same flow parameters by changing the 
location of hot air supply from 1.5 m to 2.0 
m there is no change in the thickness of the 
stratified layer. However there is a shift in 
the location of the interface which depends 
linearly on the shift in the vertical location 
of the hot supply terminal. In both cases 
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flow is divided into three zones; two mixed 
zones divided by a clear stably stratified 
layers. The temperature profile also varies 
from a mild gradient in mixed zone to a 
sharp gradient within the stratified layers. 
The Richardson number (Ri) is large enough 
for flow to be stratified. However, as the 
input location shifts upward the interface 
also moves upwards towards the ceiling of 
the chamber. When the input height is at 
1.5m the lower zone also show some 
stratification as the local Ri number is 
approximately 0.15. The thickness of stably 
stratified region (for local Ri >0.25) is 
similar in both cases. The effect of 
buoyancy is more significant than the 
momentum forces in this case. The overall 
effect of various mechanisms that influence 
the flow characteristics within the 
enclosures are defined by Re and Ri. 
Figures 5 and 6 show the dimensionless 
temperature profiles for various values of 
global flow parameters controlled by the 
flow rates of cold and hot air. For both cases 
shown in Figure 5, Ri is of the same order 
and the profile shows stable stratification 
and the interface forms. However, due to the 
difference in the momentum forces i.e. Re 
number, the location of interface is not the 
same. For a higher Re number which was 
achieved by increasing the momentum of air 
supply at the floor level, the interface is 
shifted towards the floor and is below the 
exhaust level. For weak momentum 
(Re=9700) the interface is at the exhaust 
location. Increase in momentum also results 
in decrease in global temperature difference. 
The flow is stratified right from the floor 
level to the exhaust location for both cases 
shown in Figure 6. The location of interface 
is below the exhaust location for both cases 
but very different to on another. As shown 
in the temperature distribution i.e. the 
position of the interface and the level of 
stratification is both affected by the 
momentum and buoyancy forces. 
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Conclusions 

The effects of input location on the stratified 
flow characteristics were investigated. When 
a location of hot air input terminal is high 
towards the ceiling, supply is in terms 
negatively buoyant jet. The ratio of 
momentum and buoyancy forces is such that 
sufficient flow stratifies across the height of 
the room and the flow region shows a clear 
stratified zone with an interface, while for a 
low level input location, the interface level 
moves downward yielding unstable 
stratified flow leading to mixed flow in both 
zones. The temperature distribution in the 
upper zone is somewhat independent of the 
location of input location unlike the lower 
zone. Although air supply at high 
momentum tends to de-stratify the flow, 
leading to vertical uniform temperature 
profiles and high temperature differences 
lead to stratification of the flow, it is the 
relative influence of inertial and buoyancy 
forces that determine the position of the 
interface and degree of stratification. 
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