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Abstract 

In this article, a theoretical model is developed to investigate the effects of the 

axial heat conduction on the laminar forced convection in a circular tube with uniform 

internal heat generation in the solid wall. In the current work, three different fluids, i.e. 

water, n-decane and air, are selected on purpose since their thermophysical properties 

show different behavior with temperature. The effects of the axial heat conduction 

with varying dynamic viscosity and/or varying thermal conductivity are investigated 

in a systematic manner. Results indicate that the variable-property effects could 

alleviate the reduction in Nusselt number (Nu) due to the axial heat conduction. For 

the case of Peclet number (Pe) equal to 100, wall thickness to inner diameter ratio of 1 

and solid wall to fluid thermal conductivity ratio of 100, the maximum Nu deviation 

between constant and variable properties are up to 7.33% at the entrance part for 

water in the temperature range of 50℃, and 4.45% at the entrance part for n-decane in 

the temperature range of 120℃, as well as 2.20% at the ending part for air in the 

temperature range of 475℃, respectively. In addition, the average Nu deviation for 

water, n-decane and air are 3.24%, 1.94% and 1.74%, respectively. Besides, Nu 

decreases drastically with decreasing Pe when Pe≤500 and with increasing solid wall 

to fluid thermal conductivity ratio ( sfk ) when sfk ≤100. It is also found that variable 

properties have more obvious effects on the velocity profile at the upstream part while 

more obvious effects on the temperature profile at the downstream part.  

Keywords 

Conjugate heat transfer; laminar flow; axial heat conduction; variable fluid properties; 

Nusselt number. 
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Nomenclature   

    

uin uniform inlet velocity (m/s) ksf solid wall to fluid thermal conductivity ratio 

tin uniform inlet temperature (K) Nuz local Nusselt number 

um average axial velocity (m/s) Re Reynolds number 

umax maximum axial velocity (m/s) Pr Prandtl number 

t temperature (K) Pe Peclet number 

T dimensionless temperature Tf
*                                    dimensionless fluid bulk temperature 

p pressure (Pa) Tw
*  dimensionless interfacial wall temperature 

P dimensionless pressure q
*
 dimensionless interfacial heat flux 

u axial velocity (m/s) qw,in actual interfacial heat flux (W/m
2
) 

U dimensionless axial velocity q
’
w,in ideal interfacial heat flux (W/m

2
) 

v radial velocity (m/s) z
*
 dimensionless axial distance 

V dimensionless radial velocity ∆Nu Nusselt number deviation (%) 

r radial coordinate (m)  

R dimensionless radial coordinate Greek symbols 

z axial coordinate (m) ρ density (kg/m
3
) 

Z dimensionless axial coordinate 


 internal heat generation (W/m
3
) 

u(r) axial velocity profile in radial cross-section 𝛿 wall thickness to inner diameter ratio 

t(r) temperature profile in radial cross-section 𝜇 dynamic viscosity (Pa∙s) 

L tube length (m) ∆ wall thickness (m) 

A cross-sectional area of the tube (m
2
)  

m mass flow rate (kg/s) Subscripts 

ri tube inner radius (m) f fluid    

ro tube outer radius (m) s solid 

di tube inner diameter (m) w wall 

do tube outer diameter (m) cp constant fluid properties 

cp specific heat capacity (J/kg∙K) vp variable fluid properties 

k thermal conductivity (W/m∙K) wall considering the axial heat conduction 

Lh 

Lt 

theoretical hydrodynamic length (m) 

theoretical thermal entrance length (m) 
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1. Introduction 

Conjugate heat transfer problems are not new in concept and have been still 

extensively studied over the past decades because of its significance in a large variety 

of engineering applications, such as pipeline petroleum transport, micro-devices as 

well as aerospace technology. The axial heat conduction has strong effects on heat 

patterns of the internal flow in channels with thick walls, which are far from the 

idealized boundary conditions, such as constant outside wall temperature and uniform 

outside heat flux, on which the available standard heat transfer correlations are based. 

The discrepancies between experimental results and numerical predictions based on 

the conventional correlations which neglect the axial heat conduction are frequently 

reported in scientific literature [1, 2]. Faghri and Sparrow [3] reported that the 

influence of the axial heat conduction was relatively greater for laminar flow than that 

for turbulent flow. Their results also showed that the wall axial conduction could 

easily overwhelm the fluid axial conduction. Therefore, more attention should be paid 

to the axial heat conduction in the solid region at low Reynolds number [4, 5].  

Many analytical, numerical and experimental works have been done in order to 

reveal the effects of the axial heat conduction on the laminar flow. Zariffeh et al. [6] 

and Bilir [7] used a finite-difference method to investigate the combined effects of the 

wall and fluid axial conduction. These studies were based on the assumption of 

one-dimensional conduction in the solid wall. Quintero and Vera [8] theoretically and 

numerically studied the multilayered, counterflow, parallel-plate heat exchangers, 

considering both axial and transverse wall conduction effects. Davis and Gill [9] 

employed analytical and experimental methods to investigate the Couette flow 

between parallel plates, studying the parameters that determined the relative 

importance of the axial wall heat conduction. Adelaja et al. [10] used the separation of 
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the variables in order to investigate the conjugate heat transfer in tube laminar flow. 

Axtmann et al. [11] focused on the convective heat transfer in the thermal entrance 

region of the concentric annuli and proposed Nusselt number correlations of laminar 

and turbulent internal flows. Furthermore, the axial heat conduction is more 

prominent in microchannels since the wall thickness is significant compared to the 

tube’s hydraulic diameter, and thus almost all of the microchannels should be 

considered as a thick-wall type. Detailed research activities were performed in 

microchannels over the past decades, such as Nonino et al. [12], S. X. Zhang et al. 

[13], Toh et al. [14] and Gamrat et al. [15].  

With respect to the evaluation criteria of the axial heat conduction, Faghri and 

Sparrow [3], Maranzana et al. [16], Rahimi and Mehryar [17] and Lin et al. [18] 

defined their own dimensionless wall conduction number M, which represented the 

ratio of the axial heat conduction in the solid wall to the heat convection in the fluid 

from different angles. Maranzana et al. [16] concluded that the axial conduction could 

be neglected when M was lower than 0.01 for most cases. Lin et al. [18] took the 

temperature gradient of the solid wall and fluid into consideration to define a modified 

axial conduction number. According to the conclusions obtained from above studies, 

whether the effects of the axial heat conduction can be neglected or not is highly 

situation-dependent and the axial conduction number is not the only criterion.  

On the other hand, the assumption of the constant fluid properties is inaccurate, 

since the fluid flow and heat transfer characteristics in channels with variable fluid 

properties reveal significant deviations from that with constant properties. Many 

previous studies paid attention to the influence of the variable properties in macro- or 

micro-convection within the continuum regime during the last few decades. Kumar 

and Mahulikar [19] investigated the effects of the temperature-dependent viscosity 
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variation on the fully developed flow through a microchannel and observed four 

different flow regions in the flow regime. Ho et al. [20] studied the effects of the 

temperature-dependent thermophysical properties on the laminar forced convection 

effectiveness of the Al2O3-water nanofluids in a circular tube imposed to a constant 

heat flux. It was found that the effects of the thermophysical properties on the Nusselt 

number were more notable with an increase in nanofluid concentration. Ghosh et al. 

[21] developed a simulation algorithm of the multistream plate fin heat exchangers 

incorporating the effects of the axial conduction in the heat exchanger core, heat 

leakage and variable fluid properties. Lelea [22] investigated the conjugate heat 

transfer of the variable-property water flow inside the microtube and analyzed the 

influence of the heating position, tube material, wall thickness and Re upon the 

thermal parameters. Nonino et al. [23] investigated the laminar forced convection at 

the entrance region of the straight ducts with variable viscosity according to an 

exponential relation by a finite element procedure, considering different 

cross-sectional geometries. Afterwards, they adopted the same procedure to study the 

effects of the viscous dissipation and temperature dependent viscosity in thermally 

and simultaneously developing laminar flows [24]. A series of work by Mahulikar and 

Herwig were related to the variable-property effects in laminar convection of the 

incompressible liquid and compressible gas. Mahulikar and Herwig [25] investigated 

the convection from macro-to-microscale by re-examing the dimensionless governing 

equations including the dynamic viscosity and thermal conductivity variation. They 

concluded that the effects of the property variations became highly significant from 

macro-to-microscale convection, and that the effects of the property variations along 

the flow became more significant relative to the property variations over the cross 

section. Similar conclusions were also drawn from their research [26]. Later on, they 
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made a further analysis of the laminar micro-convection effects due to the variation of 

the dynamic viscosity and thermal conductivity of the incompressible liquid [27]. 

After that they paid attention to the laminar micro-convection due to variation of the 

gas properties [28], incorporating the physical effects of the variation of the gas 

density with pressure and temperature as well as gas viscosity and thermal 

conductivity with temperature. Gulhane and Mahulikar [29, 30] explored the forced 

laminar gas micro-convection due to density, specific heat capacity, viscosity and 

thermal conductivity variations with entrance effects. Ramiar and Ranjbar [31] 

studied the effects of the axial conduction and variable properties on two-dimensional 

conjugate heat transfer of Al2O3-EG/water mixture nanofluid in microchannel, 

concluding that considering variable properties caused higher Nu and lower shear 

stresses compared with constant properties. The main conclusion from these 

researches is that taking variable-property into consideration is more accurate and 

more realistic, especially at low Re [32, 33].  

It appears from the aforementioned investigations that the variable-property 

effects play a significant role on the fluid flow and heat transfer characteristics. To the 

best knowledge of the authors, however, the comprehension of the flow and heat 

transfer mechanism of the axial heat conduction with varying fluid properties has 

been far from complete and there is still much room to be enhanced in this area. From 

the mechanism research’s point of view, the main objective of the present work is to 

propose a theoretical model capable of investigating the conjugate heat transfer 

characteristics with varying fluid properties such as dynamic viscosity and thermal 

conductivity with an emphasis on the axial heat conduction in a forced laminar flow 

tube. Therefore, in this work three different fluids, i.e. water, n-decane (C10) and air, 

are selected in order to achieve a profound comprehension on the heat transfer 
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mechanism of conjugate heat transfer problems with varying fluid properties.  

2. Mathematical model and numerical analysis 

2.1. Mathematical model 

Fig. 1 illustrates the schematic diagram of the mathematical model. Fluid with 

uniform velocity inu  and temperature int  enters a circular tube with inner radius ir , 

wall thickness  , and length L. In the current study, the tube length is five times of 

the thermal entrance length in order to incorporate both developing and fully 

developed regions. The heat source is associated with a uniform internal heat 

generation 


 applied in the solid wall. The two ends and outside wall of the tube are 

set as adiabatic conditions. The current work investigates both developing and 

developed laminar flow, which occurs when velocity and temperature fields develop 

simultaneously as the heat transfer begins at the duct inlet. 

 

Fig. 1. Schematic diagram of the mathematical model and coordinate system. 

The mathematical descriptions are derived from continuum-based equations of 

mass, momentum and energy. The following major assumptions are employed in the 

derivations of the governing equations:  

(1) Incompressible Newtonian fluid and steady laminar flow. 

(2) Thermal conductivity and dynamic viscosity are the only physical properties 
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varying as a function of temperature while other fluid properties are kept unchanged. 

(3) Constant thermal properties of the solid wall. 

(4) Negligible effects of electromagnetic forces, gravity and other body forces. 

(5) Negligible radiation heat transfer. 

(6) Negligible heat generation due to viscous dissipation. 

(7) No slip flow and no temperature jump.  

Other simplifications are described in due course in the rest of the paper. 

Based on the above assumptions, in the present study, two-dimensional steady 

flow and heat transfer of the incompressible fluids will be taken into account. The 

continuity equation (1), momentum equations (2) and (3) in axial and radial directions, 

as well as energy equations (4) and (5) in the fluid and solid regions, respectively, are 

as follows.  

Continuity equation: 

   1
0

f fu rv

z r r

  
 

 
                                               (1) 

Momentum equations: 

   1 1f f

f f

uu r vu p u u
r

z r r z z z r r r

 
 

         
       

         
                (2) 

   
2

1 1f f

f f f

uv r vv p v v v
r

z r r r z z r r r r

 
  

         
        

         
          (3) 

Energy equations: 

Liquid 
   , ,1 1f p f f f p f f f f

f f

c ut r c vt t t
k rk

z r r z z r r r

        
     

        
          (4) 

Solid  1
0s s

s s

t t
k rk

z z r r r

     

     
      

                                  (5) 

where f , ,p fc , fk  and f  are the fluid density, specific heat capacity, thermal 
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conductivity and dynamic viscosity, respectively; 


 is the internal heat generation in 

the solid wall, W/m
3
. 

According to the physical problem described in Fig.1, the boundary conditions 

can be mathematically summarized as follows:  

0,  0 ,  ,  0,  

0,  ,  0,  0

,  ,  0,  0   

0,  0 ,  0,  0,  0

,  0 ,  0,  0,  ,  

i in f in

s
i o

s
i o

f

f s
i s f f s

z r r u u v t t

t
z r r r u v

z

t
z L r r r u v

z

tu
r z L v

r r

t t
r r z L u v t t k k

r r


      



      




     


 
     

 
 

      
 

                                             (6)    

In order to generalize results, the non-dimensional governing equations and 

boundary conditions are derived in the following:   

Continuity equation: 

 1
0

RVU

Z R R


 

 
                                                    (7) 

Momentum equations: 

   1 2 1 2UU RUV P U U
R

Z R R Z Z Re Z R R Re R

         
       

         
                    (8) 

   
2

1 2 1 2 2UV RVV P V V V
R

Z R R R Z Re Z R R Re R Re R

         
        

         
               (9) 

Energy equations: 

Liquid 
   1 2 1 2f f f f
UT RVT T T

R
Z R R Z Pe Z R R Pe R

       
     

        

                (10) 

Solid  
2

2

1 1
0s

sf

T T
R

Z R R R k

   

   
   

                                     (11) 

The non-dimensionl parameters in Eqs. (7)-(11) are defined as below: 
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 

 

 

 

2 22

' 2 2 2

,

2 1 22
, , , , , , 

2 2 1

ii i

w in o i i i i in in f in

dr r z r u v p
Z R U V P

q r r d r r u u u




  


   
       

   
=

  , ,

'

,

, , , .
f in f i f p f i f p fs

sf

w in i f f f f

k t t ud c ud ck
T k Re Pr = Pe Re Pr

q r k k k

  




     


, 

 

where sfk  stands for solid wall to fluid thermal conductivity ratio, defined as 

/sf s fk k k ;   stands for wall thickness to inner diameter ratio, defined as 

/ id   ;   is the wall thickness. 

These equations are solved under the following boundary conditions: 

0,  0 1.0,  1.0,  0,  0

0,  1.0 ,  0,  0

,  1.0 ,  0,  0

0,  0 , 0,  0,  0

1.0,  0 ,  0,  0,  ,  

  

f

o

i

o s

i i

f

i

f s
s f f s

i

Z R U V T

r T
Z R U V

r Z

r TL
Z R U V

r r Z

TL U
R Z V

r R R

T TL
R Z U V T T k k

r R R




     
 
      




     




     

 

 
      

 

                                               (12)













 

The dimensionless governing equations above suggest that the axial heat 

conduction mainly depends on four parameters, such as Pr, Re, the dimensionless 

parameter sfk  and  .  For a given fluid, axial heat conduction depends on only 

three parameters: Pe, sfk  and   since Pe equals to the product of Pr and Re. The 

local Nusselt number for the circular cross-section tube is defined in Eq. (13). 

   
,i

f

i

r r w in i

z

w f f w f

t
d

r q d
Nu

t t k t t






  

 
                                          (13) 

where ft  is the fluid bulk temperature, which is the average fluid temperature 

weighted by the mass flow rate; wt  is the wall temperature at the solid-fluid interface; 

,w inq  is the actual heat flux density with the unit of W/m
3
 calculated at the inside 
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surface of the tube wall which depends on axial distance z; 
'

,w inq  is the ideal heat flux 

density calculated according to 


 as follows: 

 2 2

'

,
2

o i

w in

i

r r
q

r





                                                     (14) 

In the following sections the dimensionless interfacial heat flux 
*q , temperature 

T
*
 and Re are defined in Eq.(15-17) respectively: 

,*

'

,

w in

w in

q
q

q
                                                           (15) 

 *

'

,

in f

w in i

t t k
T

q r





                                                      (16) 

2 i m f

f

ru
Re




                                                        (17) 

where mu  is the average velocity of the fluid, defined as  /m fu m A . 

According to [34], the theoretical hydrodynamic and thermal entrance lengths are 

given in Eq. (18a) and (18b).  

0.05h iL d Re                                                      (18a) 

0.05t iL d RePr                                                    (18b) 

2.2. Numerical method and validation 

In the current work, the commercially available computational fluid dynamics 

(CFD) software, ANSYS CFX 15.0, was used to solve the governing equations with 

imposed boundary conditions mentioned above. A mass-flow-inlet and 

temperature-inlet were set as the inlet boundary conditions, and a pressure-outlet was 

set as the outlet boundary condition. The element-based finite volume method (FVM) 

was used to discretize the governing equations and imposed boundary conditions [35]. 
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The second order high resolution was used for the discretization of the convective 

term. Furthermore, the SIMPLE algorithm [36] was adopted to deal with the 

pressure-velocity coupling. The internal wall was set to satisfy no slip and no 

penetration conditions. Since the governing equations are coupled and thus there was 

no need to specify the interfacial boundary condition between the fluid and solid 

domain. The iterations were continued until a converged solution was obtained with 

root mean square residuals less than -710  for all the variables. 

The laminar flow of water with constant properties in a circular tube without 

solid region and with uniform heat flux over the entire wall surface was considered as 

a reference. Under these conditions, the accurate analytical value of Nu for fully 

developed flow is reported 48/11(appropriate 4.364) [37]. The grids in axial direction 

were uniform while the grids in radial direction were nonuniform with mesh 

refinement near the inner wall surface shown in Fig. 2.  

 

Fig. 2. Computational channel mesh. 

The grid independence study was conducted to identify an appropriate grid 

density for the aimed calculations. The computational domain included both the fluid 

and solid wall regions, which were discretized using five different grid arrangements 

of 12×1000, 16×1000, 20×1000, 24×1000 and 28×1000. The numerical results of 
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the local Nusselt number (
zNu ) versus dimensionless axial distance  * / iz z r Pe  

are presented in Fig. 3. Besides, table 1 illustrates the relative differences of zNu  in 

the fully developed region between simulated and analytical values for different grid 

arrangements.  

 
Fig. 3. Grid independent study. (water, Re=14.3, Pr=7, / 0id  ) 

Table 1 Relative differences between simulated values and analytical values. 

Grid arrangement  Simulation error (%)  

Radial*Axial (Nu-4.364)/4.364×100 

12×1000  0.425  

16×1000  0.254  

20×1000  0.151  

24×1000  0.075  

28×1000  0.067  

In Fig. 3, it is apparent that the simulated fully developed zNu  generally agrees 

with the analytical value with a relative error lower than 0.425% at various grid 

arrangements. The vertical line of z
*
=0.1 stands for the dimensionless thermal 

entrance length predicted by Eq. (18b), which is only an experimental correlation not 
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a precise expression, and hence a deviation can be observed. The axial velocity profile 

and temperature profile in cross-section in fully developed laminar flow have 

analytical solutions as follows [37].  

2 2

max2 1 1m

i i

r r
u u u

r r

      
         
         

                                       (19) 

4
2 2

2

3

4 4

w
w i

f i i

q r
t t r r

k r r

 
     

 

                                          (20) 

According to the above equations, for grid arrangement of 24×1000, the 

analytical velocity/temperature profiles and simulated velocity/temperature profiles at 

z
*
=0.25 are shown in Table 2, in which the adjust R-square of simulations is 1.  

Table 2 Velocity and temperature profiles of analytical solution and simulated solution. 

Velocity/temperature  

profiles 

Analytical solution Simulated solution 

 u r  2223.783 0.00358r   2 -9223.997 1.49351 10 0.00358r r     

 t r  
10 4 6 22.44145 10 1.56253 10 310.89r r    

 

10 4 3 6 2 42.42908 10 9.96208 1.5577 10 4.01613 10 310.94r r r r       

 

    From Table 2, it can be seen that at the grid arrangement of 24×1000, both the 

temperature and velocity profiles in the fully developed region show good agreements 

with analytical solutions. Furthermore, as shown in Table 1, from grid arrangement of 

24×1000 to 28×1000, the grid number increases by 37.12% while simulation error 

decreases by just 0.01%. Therefore, the grid arrangement of 24×1000 for the 

computational domain has satisfactory grid-independence and is sufficient to resolve 

the conjugate heat transfer problem in forced laminar flow.  

3. Results and discussion 

3.1. Axial heat conduction with constant fluid properties 

For the purpose of comparison, the effects of the axial heat conduction with 
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constant properties are studied firstly in order to gain a deep understanding of the 

axial conduction effects with variable fluid properties. As previously stated, for a 

given fluid, the degree of the axial heat conduction is only determined by Pe, 
sfk  

and  . The influence of these parameters on the axial heat conduction will be 

discussed in detail in this section. In the present study, water with constant properties 

is chosen as the benchmark case. Four different values of Pe i.e., 30, 100, 500 and 

1000, together with three different ksf values of 1, 100 and 500, as well as three 

different values of Δ, namely, 0.5di, 1di and 2di are considered. The ksf values 

representing the thermal conductivity ratio of solid wall to fluid are selected according 

to [13] in practical applications. Table 3 is a summary of the value arrangements for 

numerical simulations. A total of 36 simulations are carried out to allow for all the 

possible combinations. The effects of Pe, sfk  and   on the local Nusselt number 

Nuz, the dimensionless interfacial heat flux 
*q , dimensionless fluid bulk temperature 

*

fT  and dimensionless interfacial wall temperature *

wT , are shown in Fig.4, Fig.5 and 

Fig.6, respectively, with reference to representative cases. There are three straight dot 

lines in Fig.4a, Fig.5a and Fig.6a. The horizontal lines of Nu=4.364 and Nu=3.66 

stand for the analytical values of fully developed Nu under constant heat flux 

boundary condition and constant temperature boundary condition, respectively. The 

vertical line of z
*
=0.1 stands for the thermal entrance length predicted by Eq. (18b). 

Table 3 Value arrangements for numerical simulations. 

Re Pe /s fk k  / id  / iL d  

4.28 30 1 0.5 7.5 

14.28 100 100 1 25 

71.40 500 500 2 125 

142.80 1000   250 



 

17/41 

 

3.1.1. Influence of Pe, 
sfk  and   on 

*q , 
*

fT  and *

wT  

It is recognized that the axial wall heat conduction can result in more heat 

conduction toward the entrance where temperature of the wall is lower due to the 

higher convective heat transfer coefficient, as shown in Fig. 4d, Fig. 5d and Fig. 6d. 

Thus, more heat enters the fluid at the entrance whereas less heat enters the fluid at 

the exit according to the conservation of the total heat. The effects of the axial heat 

conduction on 
*q , 

*

fT  and *

wT   can be summarized as follows: (1) axial heat 

conduction can lead to the fluid bulk temperature increase, deflecting from linear 

distribution for those without axial heat conduction, as demonstrated in Fig. 4c, Fig. 

5c and Fig. 6c; (2) axial heat conduction forces the interfacial wall temperature to 

increase in the upstream part while to decrease in the downstream part, approaching 

uniform wall temperature boundary condition, as shown in Fig. 4d, Fig. 5d and Fig. 

6d; (3) axial heat conduction can affect the interfacial heat flux higher in the upstream 

part while lower in the downstream part, departing from uniform heat flux boundary 

condition, as illustrated in Fig. 4b, Fig. 5b and Fig. 6b; (4) consequently, axial heat 

conduction lowers Nuz along the tube relative to those under constant heat flux 

boundary condition at the solid-fluid interface, as shown in Fig. 4a, Fig. 5a and Fig. 

6a.  
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Fig. 4. Effects of Pe on the axial distribution of a: Nuz; b: 

*q ; c: *

fT ; d: *

wT . 

 

 

Fig.5. Effects of ksf on the axial distribution of a: Nuz; b: 
*q ; c: *

fT ; d: *

wT .  
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Fig. 6. Effects of 𝛿 on the axial distribution of a: Nuz; b: 
*q ; c: *

fT ; d: *

wT .  

Fig. 4 shows that the axial heat conduction becomes more dominant with the 

increase of Pe. Increasing Pe can decrease the thermal resistance across the flow and 

further decrease the effects of axial heat conduction. As shown in Fig. 5, the axial heat 

conduction becomes more significant as sfk  increases. Since sfk  is the ratio of the 

thermal resistance in the flow to that in the wall, with increasing sfk  axial heat 

conduction in the wall increases due to the wall thermal resistance reduction. It can be 

observed from Fig. 6 that the larger   implies the more significant axial heat 

conduction. With respect to  , compared to that in the axial direction, the higher the 

ratio, the larger the thermal resistance in the radial direction. Thus, it is more likely to 

conduct more heat to the upstream of the tube. It can be generally observed from 

above figures that the axial heat conduction becomes more dominant with increasing 

sfk  and   as well as with decreasing Pe.  
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3.1.2. Effects of the axial heat conduction on Nusselt number 

The following noticeable features of Nu can be observed from Fig. 4a, Fig. 5a 

and Fig. 6a:  

(1) It is noted that the axial heat conduction has the generalized effects of 

reducing Nuz with respect to the “no wall” case. As the effects of the axial heat 

conduction become more significant, Nuz in the intermediate part gradually decreases 

from 4.36 to 3.66. Taking the axial heat conduction into account, the circular tube may 

experience a boundary condition transformation: from the uniform outside heat flux 

boundary condition to the constant outside wall temperature boundary condition. 

(2) The results show that the axial heat conduction causes Nuz to decrease 

sharply at both the entrance and exit of the tube, which can lead to a reduction in 

average Nu. Similar behavior is also found but will not be repeated here. The sharp 

drop of Nuz at the entrance can be explained by the fact of the entrance effects [32] 

while the sharp reduction in Nuz at the exit can be explained by the influence of the 

axial heat conduction, which causes more heat enters the fluid at the entrance whereas 

less heat enters the fluid at the exit on account of the conservation of the total heat. 

Thus, it appears to be a sharp drop of Nuz at the exit.  

(3) It is recognized that the axial heat conduction causes Nuz to decrease faster at 

the entrance, which contributes to the laminar flow towards a thermal fully developed 

region. This will have a negative influence on the enhancement of the heat transfer. 

Unlike the results presented by Rahimi and Mehryar [17], Fig. 4a, Fig. 5a and Fig. 6a 

present that Nuz in the fully developed region is not always a constant value. 

Furthermore, in some cases Nuz does not monotonically decrease from the inlet to the 

outlet, but demonstrates a local minimum near the entrance. Such minima are also 

reported in some numerical [12, 22, 31] and experimental [39] researches. 
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From the point view of Nu, in the entrance and ending regions, Nu varies 

significantly while in the fully developed region Nu varies less. Specifically, the 

average Nu deviations of all the 36 cases for the entrance region, for the fully 

development region and for the ending region are up to 21.516%, 1.829% and 4.415%, 

respectively. Here, the fully developed region is different from the “no wall” case, in 

which Nu remains constant. In the fully developed region discussed here, the thermal 

boundary layer converges at the central streamline though the temperature profile 

changes along the channel as shown in Fig. 15a. Besides, Fig. 15b indicates that the 

velocity profile does not change in the fully developed region even considering axial 

heat conduction. 

Fig. 7 shows the Nusselt number deviation between the case with axial heat 

conduction and that without axial heat conduction as a function of Pe, sfk  and  . 

Erro_Nu is calculated by Eq. (21). In Fig. 7, Nu decreases drastically with decreasing 

Pe at low Pe (Pe≤500) and with increasing sfk  at low sfk  ( sfk ≤100). As axial heat 

conduction becomes dominant, Pe has more effects than sfk  and  . 

,
Erro _ 100

cp wall cp

cp

Nu Nu
Nu

Nu


                                          (21) 
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Fig.7. Effects of Pe, ksf and 𝛿 on Erro_Nu.  

3.2. Axial heat conduction with variable fluid properties 

As mentioned earlier, in a real case the solid wall with strong axial heat 

conduction conducts a portion of heat from the downstream part back to the upstream 

part of the channel, leading to the redistribution of 
*q , 

*

fT  and *

wT , which finally 

contributes to the change of Nuz. But most of the open published literatures take the 

fluid properties as constant when investigating the axial heat conduction. This section 

will further study the effects of the axial heat conduction allowing for variations in 

fluid properties.  

When the flow is incompressible, property variations may occur due to the 

temperature or pressure dependent viscosity, thermal conductivity, specific heat 

capacity and other fluid properties. Among all the thermophysical properties, the 

present work selected dynamic viscosity and thermal conductivity as the most 

prominent and the most important fluid properties while other properties were kept 
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constant. Prandtl number ( /pPr c k  ) is the characteristic number of a fluid. In the 

temperature ranges examined in this study, dynamic viscosity and thermal 

conductivity have the greatest change among the three kinds of thermophysical 

properties (  , pc , k ). Fluid-property change rate for water, C10 and air from inlet 

to outlet is listed in Table 4. In addition, the influence of the pressure on the fluid 

properties was not considered. This assumption, though somehow unrealistic for 

certain fluid especially for gas, can clearly reveal the role played by the most 

prominent fluid properties from a research point of view. In this section, three 

different working fluids, i.e., water, C10 and air are selected since the behavior of 

both   and k  of the three fluids are different, which can represent the change of 

  and k  with temperature increase for most fluids. k  used in the calculations of 

Nuz by Eq. (13) was obtained according to the fluid bulk temperature. For water and 

C10, the numerical simulations were conducted within the temperature range of the 

liquid phase at atmospheric pressure. The air considered in this study was not ideal 

gas since its density remained constant. For the three kinds of fluids, the 

temperature-dependent   and k  were given by cubic polynomial fitting results of 

data from fluid property database REFPROP Version 9.0 developed by the National 

Institute of Standards and Technology [40] in the form of 

    2 3

0 1 2 3/k T T a a T a T a T     , where 0 1 2 3, , ,a a a a  were constant coefficients. 

The following work was conducted for the case with Pe=100, 100sfk   and 1 

since variations in fluid properties were the focus of this section. While for water, the 

present work studied cases under different parameters related to the axial heat 

conduction.  
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Table 4 Fluid-property change rate for water, C10 and air (from inlet to outlet). 

Fluid Temperature range(℃) 
Dynamic viscosity 

change rate (%) 

Thermal conductivity 

change rate (%) 

Water 50 -50.7 10.8 

C10 120 -71.5 -22.0 

Air 475 49.4 111.9 

3.2.1. Effects of both separately and simultaneously variable  T  and  k T  on 

Nuz, 
*q , 

*

fT  and *

wT  

 
Fig. 8. Comparisons of the local values of relevant parameters between constant  

and variable properties of water. (a: Nuz; b: 
*q ; c: *

fT ; d: *

wT )  

Comparisons of the local values of relevant parameters (Nuz, 
*q , 

*

fT  and *

wT ) 

between constant and variable properties for water are shown in Fig. 8. It is clear that 

Nuz with variable  T  is much higher than that with constant properties. It is 

generally believed that a lower viscosity contributes to a higher velocity and a smaller 

boundary layer thickness, which is favorable for promoting convective heat transfer in 

the channel. Fig. 8 presents that Nuz with variable  k T  is a little higher than that 
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with constant properties. The thermal boundary layer thickness indicates the scale of 

temperature gradient across the flow and thus directly determines the local heat 

transfer performance. A higher thermal conductivity enhances the heat transfer 

performance. Therefore, the increase in thermal conductivity account for the higher 

Nuz of water as temperature rises. Fig. 8 shows that Nuz with both variable  T  

and  k T  is much higher than that with constant properties. Since water has a lower 

 T  level and a higher  k T  level as temperature rises, the heat transfer in the 

heated tube is enhanced with variable  T  and  k T  for water, both separately 

and simultaneously, within the temperature range considered here. It can also be seen 

from Fig. 8 that variations in fluid properties have little effects on 
*q , 

*

fT  and *

wT  

for water due to its small change rate of fluid properties. 

 
Fig. 9. Comparisons of the local values of relevant parameters between constant  

and variable properties of C10. (a: Nuz; b: 
*q ; c: *

fT ; d: *

wT ) 

In Fig. 9 the comparisons of the local values of relevant parameters (Nuz, 
*q , 

*

fT  and *

wT ) between constant and variable properties for C10 are shown. Since C10 
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has a lower  T  level as temperature rises, which contributes to promoting 

convective heat transfer in the channel, Nuz of C10 with variable  T  is much 

higher than that with constant properties. Nuz of C10 with variable  k T  is lower 

than that with constant properties due to its lower  k T  level as temperature rises. In 

addition, Nuz of C10 with both variable  T  and  k T  is higher than that with 

constant properties but lower than that with only variable  T . It appears that 

dynamic-viscosity variation dominates for C10. Fig. 9 also presents that variations in 

properties have little effects on 
*q  and 

*

fT  for C10 but cause *

wT  to be slightly 

higher than that of the constant properties.  

 

Fig. 10. Comparisons of the local values of relevant parameters between constant  

and variable properties of air. (a: Nuz; b: 
*q ; c: *

fT ; d: *

wT )  

In Fig. 10 four figures are presented for the comparisons of the local values of 

relevant parameters (Nuz, 
*q , 

*

fT  and *

wT ) between constant and variable properties 
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for air. The higher  T  and  k T  levels of air as temperature rises can explain 

the characteristics of Nuz with constant and variable properties shown in Fig.10: (1) 

Nuz with variable  T  is lower than that with constant properties; (2) Nuz with 

variable  k T  is higher than that with constant properties; (3) Nuz with both variable 

 T  and  k T  is higher than that with constant properties but lower than that with 

only variable  k T ; (4) Variations in properties have little effects on 
*q  and 

*

fT  for 

air, but causes *

wT  to be lower than that of the constant properties. 

It is intuitive to predict a steep Nu jump near the front part of the tube due to the 

thin thermal boundary layer, regardless of variable- or constant-property flow, as 

hinted in Figs. 8-10. Though the variations of 
*q  and 

*

fT  are small, their combined 

effects together with the variations of *

wT  can cause Nuz to deviate from that with 

constant properties. Variable-property effects cannot change the variation trend of the 

distribution of Nuz, but variable dynamic viscosity and thermal conductivity affect 

more the upstream part of the channel for water and C10, while for air their effects are 

more notable at the downstream part of the channel. This so-called variable-property 

effects are evaluated by the Nu deviation, defined as follows: 

, ,

,

100
vp wall cp wall

cp wall

Nu Nu
Nu

Nu


                                            (22) 

The maximum Nu  of water, C10 and air are up to 7.33% at the entrance part, 

4.45% at the entrance part, 2.20% at the ending part, respectively, and the average 

Nu  of water, C10 and air are about 3.24%, 1.94%, 1.74%, respectively. It is also 

worth noting that, Nu  for water and C10 due to variable  T  exceeds that due 
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to variable  k T , while for air it is the opposite. This might be explained by the 

difference of fluid-property change rate considered in this work, as shown in Table 4. 

From water, C10 to air, the temperature range becomes larger and larger. These 

differences of dynamic-viscosity variation and thermal-conductivity variation are the 

reason why the dynamic-viscosity variation dominates for water and C10, but for air 

thermal-conductivity variation is more dominant. In any case, it seems that the effects 

of the simultaneous variations of  T  and  k T  can be estimated by combining 

their separate effects qualitatively but not quantitatively.   
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Fig. 11. Comparisons of Nuz between constant and variable properties of water.   

Fig. 11 illustrates the axial distribution of Nuz with constant and variable 

properties with water as the working fluid in 14 cases. It is noted that as axial heat 

conduction becomes more dominant, variable-property effects become more notable 

at the entrance and weaken gradually as a result of axial heat conduction. Therefore, 

for water variable-property effects should be taken seriously at the entrance when 

axial heat conduction is dominant.  
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3.2.2. Effects of property variations on velocity and temperature profiles 

In order to have a deep understanding of why the changes of relevant parameters 

(Nuz, 
*q , 

*

fT  and *

wT ) happen considering variable-property effects, this could be 

identified by analyzing the velocity and temperature profile characteristics. The 

velocity and temperature profiles of variable- and constant-property flows for water, 

C10 and air are depicted in Fig. 12-14, respectively, where black curves stand for 

constant-property flow while the other curves stand for variable-property flow. The 

axial velocity and temperature profiles in cross-section are drawn at two typical 

streamwise locations, i.e., z
*
=0.025 at the entrance region and z

*
=0.25 at the fully 

developed region. 

 

 
Fig. 12. Variations of axial velocity and temperature profiles in cross-section.  

(water, a, b: z
*
=0.025; c, d: z

*
=0.25) 
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Fig. 13. Variations of axial velocity and temperature profiles in cross-section.  

(C10, a, b: z
*
=0.025; c, d: z

*
=0.25) 

 



 

33/41 

 

 
Fig.14. Variations of axial velocity and temperature profiles in cross-section.  

(air, a, b: z
*
=0.025; c, d: z

*
=0.25) 

Above figures show that the variable fluid properties have more notable effects 

on the velocity profile at the entrance region while more notable effects on 

temperature profile at the fully developed region. Since the air has the biggest changes 

of thermophysical properties compared with water and C10, variations in properties 

have the greatest effects on its velocity and temperature profiles. It is also noted that 

in Fig. 12a and c, Fig.13a and c, Fig.14a and c curves of constant k  and variable 

 k T  overlap very well with each other, which indicates that variable  k T  has 

little effects on velocity profile. But variable  k T  can affect the temperature profile 

as shown in Fig. 13b and d, Fig. 14b and d. Likewise, variations in  T  have 

greater effects on velocity profile than variations in  k T . On the one hand, for water 

and C10, velocity profile with both variable  T  and  k T  are flattened 

compared to that with constant properties while for air it is the opposite. Decrease in 

 T  due to higher temperature reduces axial velocity at the center and thus causes 

the flattening effect. This flattening effect leads to more mass flow rate near the wall, 

thereby enhancing heat convection. On the other hand, for water, the temperature 

profile of the variable properties changes a little. But for C10, the temperature profile 
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with variable  T  and  k T  are steeper compared to that with constant 

properties while for air it is also the opposite. Decrease in  k T  due to higher 

temperature reduces temperature gradient near the wall and thus weakens the heat 

convection. All these differences can be explained by the disparity of fluid-property 

changes as temperature rises. 

 

 
Fig. 15. Variations of axial velocity and temperature profiles in cross-section along the tube  

between constant and variable properties. (water, Pe=100, 100=sfk , / 1=id )  

Fig. 15 plots the velocity and temperature profiles in cross-section along the tube 

with constant- and variable-property for water. For axial heat conduction with 

constant properties, the temperature profile changes along the channel while the 

velocity profile remains unchanged. As can be seen in Fig. 15c and d, there is a 
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change in the velocity and temperature profiles with varying  T  and  k T  

along the heated region. The velocity profile, however, changes slightly along the flow, 

not as much as the temperature profile. The velocity profile becomes steeper along the 

flow direction as a result of decreasing  T  of water. Likewise, as long as  k T  

varies with increasing fluid bulk temperature, the temperature profile changes 

unceasingly along the tube and never achieves an unchanged status.  

4. Conclusions 

A comprehensive numerical study of the effects of the axial heat conduction on 

tube laminar flow and heat transfer with uniform internal heat generation has been 

conducted considering temperature-dependent  T  and  k T . The main 

conclusions can be described as follows: 

(1) Axial heat conduction has generalized effects of reducing the local Nusselt 

number with respect to the “no wall” case. Nu is still changed even at the fully 

developed region, though the thermal boundary layer is converged at the central 

streamline. Axial heat conduction can make the entrance length decrease and 

sometimes cause a minimum in Nuz distribution. Axial heat conduction becomes more 

dominant with increasing sfk  and  , as well as with decreasing Pe. Nu decreases 

drastically with decreasing Pe when Pe≤500 and with increasing sfk  when sfk

≤100. As the axial heat conduction becomes more dominant, Pe has more effects than 

sfk  and  . 

(2) Variable-property effects alleviate the reduction in Nuz due to the axial heat 

conduction, which enhances heat transfer characteristics of the channel. For the case 

of Pe=100,  =1 and sfk =100, the maximum Nu  between constant and variable 
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properties are up to 7.33% at the entrance part for water in the temperature range of 

50℃, and 4.45% at the entrance part for n-decane in the temperature range of 120℃, 

as well as 2.20% at the ending part for air in the temperature range of 475℃, 

respectively. In addition, the average Nu  for water, n-decane and air are 3.24%, 

1.94% and 1.74%, respectively. Namely, for water and C10 variable-property effects 

affect more the upstream part of the channel, while for air their effects are more 

notable at the downstream part of the channel.  

(3) For the axial heat conduction with constant properties, the temperature profile 

changes along the channel while the velocity profile remains unchanged. On the other 

hand, for the axial heat conduction with variable properties, both temperature and 

velocity profiles keep changing along the channel and the change of temperature 

profile is larger. Besides, variable properties have more obvious effects on the velocity 

profile at the upstream part while more obvious effects on the temperature profile at 

the downstream part.  
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