Information Driven Self-Organization of Agents and Agent Collectives
From a visual standpoint it is often easy to point out whether a system is considered to be self-organizing or not, though a quantitative approach would be more helpful. Information theory, as introduced by Shannon, provides the right tools not only quantify self-organization, but also to investigate it in relation to the information processing performed by individual agents within a collective. This thesis sets out to introduce methods to quantify spatial self-organization in collective systems in the continuous domain as a means to investigate morphogenetic processes. In biology, morphogenesis denotes the development of shapes and form, for example embryos, organs or limbs. Here, I will introduce methods to quantitatively investigate shape formation in stochastic particle systems. In living organisms, self-organization, like the development of an embryo, is a guided process, predetermined by the genetic code, but executed in an autonomous decentralized fashion. Information is processed by the individual agents (e.g. cells) engaged in this process. Hence, information theory can be deployed to study such processes and connect self-organization and information processing. The existing concepts of observer based self-organization and relevant information will be used to devise a framework for the investigation of guided spatial self-organization. Furthermore, local information transfer plays an important role for processes of self-organization. In this context, the concept of synergy has been getting a lot attention lately. Synergy is a formalization of the idea that for some systems the whole is more than the sum of its parts and it is assumed that it plays an important role in self-organization, learning and decision making processes. In this thesis, a novel measure of synergy will be introduced, that addresses some of the theoretical problems that earlier approaches posed.
Item Type | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords | information theory; artificial life; self organization; reinforcement learning; morphogenesis; synergy relevant information; agent collectives |
Date Deposited | 18 Nov 2024 11:15 |
Last Modified | 18 Nov 2024 11:15 |
-
picture_as_pdf - 09242164 Harder Malte final PhD submission.pdf