Robust Statistics Evidence Based Secure Cooperative Spectrum Sensing for Cognitive Radio Networks

Simpson, Oluyomi and Sun, Yichuang (2020) Robust Statistics Evidence Based Secure Cooperative Spectrum Sensing for Cognitive Radio Networks. Institute of Electrical and Electronics Engineers (IEEE).
Copy

Cognitive radio networks (CRNs), an assemble of smart schemes intended for permitting secondary users (SUs) to opportunistically access spectral bands vacant by primary user (PU), has been deliberated as a solution to improve spectrum utilization. Cooperative spectrum sensing (CSS) is a vital technology of CRN systems used to enhance the PU detection performance by exploiting SUs' spatial diversity, however CSS leads to spectrum sensing data falsification (SSDF), a new security threat in CR system. The SSDF by malicious users can lead to a decrease in CSS performance. In this work, we propose a CSS scheme in which the presence and absence hypotheses distribution of PU signal is estimated based on past sensing received energy data incorporating robust statistics, and the data fusion are performed according to an evidence based approach. Simulation results show that the proposed scheme can achieve a significant malicious user reduction due to theabnormality of the distribution of malicious users compared with that of other legitimate users. Furthermore, the performance of our data fusion scheme is improved by supplemented nodes' credibility weight.

picture_as_pdf

picture_as_pdf
1570631564.pdf

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads