Dynamic Row Activation Mechanism for Multi-Core Systems

Alawneh, Tareq A., Kirner, Raimund and Menon, Catherine (2021) Dynamic Row Activation Mechanism for Multi-Core Systems. ACM Press.
Copy

The power that stems from modern DRAM devices represents a sig- nificant portion of the overall system power in modern computing systems. In multi-core systems, the competing cores share the same memory banks. The memory contention between these cores may lead to activate a large DRAM row only to access a small portion of data. This row over-fetching problem wastes a significant DRAM activation power with a slight performance gain. In this paper, we propose a dynamic row activation mechanism, in which the optimal size of DRAM rows is detected at run-time based on monitoring the behavioural changes of the memory re- quests in accessing sub-rows. The proposed mechanism aims at providing significant memory power savings, reducing the average memory access latency, and maintaining the full DRAM bandwidth. Our experimental results using four-core multi-programming work- loads revealed that the proposed mechanism in this study can achieve both significant memory power reduction and average DRAM memory access latency improvement with negligible area overhead.

picture_as_pdf

picture_as_pdf
sample_sigconf.pdf

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads