Optimizing the hydrocyclone for ballast water treatment using computational fluid dynamics

McCluskey, Daniel and Holdo, Arne (2009) Optimizing the hydrocyclone for ballast water treatment using computational fluid dynamics. pp. 221-234. ISSN 1750-9548
Copy

Environmental concern related to the transfer of Invasive Aquatic Species by ships ballast water has given rise to the development of a vast array of ballast water treatment systems. The complex environmental challenges and tight operational characteristics of marine vessels limits the scope of technologies used for Ballast Water Treatment. As a result few technologies have progressed beyond the Research and Development stage; however one of the most promising technologies for ship board use is the Cyclonic Separator, or Hydrocyclone. Despite the use of hydrocyclones in a wide variety of engineering applications they have yet to be successfully adapted towards the removal of suspended sediment and marine organisms from large volumes of ballast water. This paper details the operational characteristics of Ballast Water Hydrocyclones, employing empirical and experimental data to validate the use of a Detached Eddy Simulation (DES) turbulence model with Computational Fluid Dynamics simulations (CFD).